|
a |
|
b/Unet/model.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
import torchvision.transforms.functional as TF |
|
|
4 |
|
|
|
5 |
|
|
|
6 |
class DoubleConv(nn.Module): |
|
|
7 |
def __init__(self, in_channels, out_channels): |
|
|
8 |
super(DoubleConv, self).__init__() |
|
|
9 |
self.conv = nn.Sequential( |
|
|
10 |
# kernel_size=3 |
|
|
11 |
# stride=1(evry rown a nd column is affected) |
|
|
12 |
# padding=1(same conv)input height i width isti nakon konv |
|
|
13 |
# bias=false |
|
|
14 |
# batchnomr-normalizacija |
|
|
15 |
# relu aktivacijska funk |
|
|
16 |
nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False), |
|
|
17 |
nn.BatchNorm2d(out_channels), |
|
|
18 |
nn.ReLU(inplace=True), |
|
|
19 |
|
|
|
20 |
nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False), |
|
|
21 |
nn.BatchNorm2d(out_channels), |
|
|
22 |
##inplace means that it will modify the input directly, without allocating any additional output |
|
|
23 |
nn.ReLU(inplace=True), |
|
|
24 |
|
|
|
25 |
) |
|
|
26 |
|
|
|
27 |
def forward(self, x): |
|
|
28 |
return self.conv(x) |
|
|
29 |
|
|
|
30 |
|
|
|
31 |
class UNET(nn.Module): |
|
|
32 |
##moguce da broj out kanala promjenis,ovjde 1 jer je binary image segemntation |
|
|
33 |
def __init__(self, in_channels=3, out_channels=2, features=[64, 128, 256, 512]): |
|
|
34 |
super(UNET, self).__init__() |
|
|
35 |
# jer hocemo evaluirat i sve to imamo tu listu zbog layera,spremamo sve te konvolucije |
|
|
36 |
self.downs = nn.ModuleList() |
|
|
37 |
self.ups = nn.ModuleList() |
|
|
38 |
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
39 |
|
|
|
40 |
# Down part |
|
|
41 |
for feature in features: |
|
|
42 |
self.downs.append(DoubleConv(in_channels, feature)) |
|
|
43 |
in_channels = feature |
|
|
44 |
|
|
|
45 |
# Up part |
|
|
46 |
for feature in reversed(features): |
|
|
47 |
self.ups.append(nn.ConvTranspose2d(feature * 2, feature, kernel_size=2, |
|
|
48 |
stride=2)) ##kernel size is tride ce poduplat ovdje height i width slike |
|
|
49 |
self.ups.append(DoubleConv(feature * 2, feature)) |
|
|
50 |
|
|
|
51 |
self.bottleneck = DoubleConv(features[-1], features[-1] * 2) # onaj zasebni dio |
|
|
52 |
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1) |
|
|
53 |
|
|
|
54 |
def forward(self, x): |
|
|
55 |
skip_connections = [] |
|
|
56 |
for down in self.downs: |
|
|
57 |
x = down(x) |
|
|
58 |
skip_connections.append(x) |
|
|
59 |
x = self.pool(x) |
|
|
60 |
|
|
|
61 |
x = self.bottleneck(x) |
|
|
62 |
skip_connections = skip_connections[::-1] # obrnuti redoslijed |
|
|
63 |
|
|
|
64 |
for idx in range(0, len(self.ups), 2): |
|
|
65 |
x = self.ups[idx](x) |
|
|
66 |
skip_connection = skip_connections[idx // 2] |
|
|
67 |
if x.shape != skip_connection.shape: |
|
|
68 |
x = TF.resize(x, size=skip_connection.shape[2:]) ##ako input nije djeljiv s 2, resize se |
|
|
69 |
|
|
|
70 |
concat_skip = torch.cat((skip_connection, x), dim=1) |
|
|
71 |
x = self.ups[idx + 1](concat_skip) |
|
|
72 |
|
|
|
73 |
return self.final_conv(x) |