import torch
import torch.nn as nn
import torchvision.transforms.functional as TF
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv = nn.Sequential(
# kernel_size=3
# stride=1(evry rown a nd column is affected)
# padding=1(same conv)input height i width isti nakon konv
# bias=false
# batchnomr-normalizacija
# relu aktivacijska funk
nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False),
nn.BatchNorm2d(out_channels),
##inplace means that it will modify the input directly, without allocating any additional output
nn.ReLU(inplace=True),
)
def forward(self, x):
return self.conv(x)
class UNET(nn.Module):
##moguce da broj out kanala promjenis,ovjde 1 jer je binary image segemntation
def __init__(self, in_channels=3, out_channels=2, features=[64, 128, 256, 512]):
super(UNET, self).__init__()
# jer hocemo evaluirat i sve to imamo tu listu zbog layera,spremamo sve te konvolucije
self.downs = nn.ModuleList()
self.ups = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# Down part
for feature in features:
self.downs.append(DoubleConv(in_channels, feature))
in_channels = feature
# Up part
for feature in reversed(features):
self.ups.append(nn.ConvTranspose2d(feature * 2, feature, kernel_size=2,
stride=2)) ##kernel size is tride ce poduplat ovdje height i width slike
self.ups.append(DoubleConv(feature * 2, feature))
self.bottleneck = DoubleConv(features[-1], features[-1] * 2) # onaj zasebni dio
self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1)
def forward(self, x):
skip_connections = []
for down in self.downs:
x = down(x)
skip_connections.append(x)
x = self.pool(x)
x = self.bottleneck(x)
skip_connections = skip_connections[::-1] # obrnuti redoslijed
for idx in range(0, len(self.ups), 2):
x = self.ups[idx](x)
skip_connection = skip_connections[idx // 2]
if x.shape != skip_connection.shape:
x = TF.resize(x, size=skip_connection.shape[2:]) ##ako input nije djeljiv s 2, resize se
concat_skip = torch.cat((skip_connection, x), dim=1)
x = self.ups[idx + 1](concat_skip)
return self.final_conv(x)