--- a +++ b/evaluate.py @@ -0,0 +1,124 @@ +import argparse +import torch +from torch.utils.data import DataLoader +import pandas as pd +import os +import numpy as np +os.environ['KMP_DUPLICATE_LIB_OK']='True' + + +from dataset import LoadDataset +from model import InferenceNet, ECGnet +from utils import visualize_two_PC, ECG_visual_two, visualize_PC_with_twolabel_rotated +from loss import calculate_Dice, evaluate_pointcloud, calculate_inference_loss, calculate_reconstruction_loss + +def evaluate(args): + + DEVICE = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') + test_dataset = LoadDataset(path=args.partial_root, num_input=args.num_input, split='test') + test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) + + # network = ECGnet(in_ch=args.in_ch, out_ch=args.out_ch, num_input=args.num_input, z_dims=args.z_dims) + network = InferenceNet(in_ch=args.in_ch, out_ch=args.out_ch, num_input=args.num_input, z_dims=args.z_dims) + + network.load_state_dict(torch.load('log/net_model.pkl')) + network.to(DEVICE) + + Dice_Scar, Dice_BZ = [], [] + precision_Scar, precision_BZ = [], [] + recall_Scar, recall_BZ = [], [] + f1_score_Scar, f1_score_BZ = [], [] + roc_auc_Scar, roc_auc_BZ = [], [] + pre_MI_size_Scar, pre_MI_size_BZ = [], [] + gd_MI_size_Scar, gd_MI_size_BZ = [], [] + MI_center_dist = [] + MI_type_list = [] + AHA_loc_score_list = [] + recon_geo_list, recon_ECG_list = [], [] + + # testing: evaluate the mean loss + network.eval() + with torch.no_grad(): + for i, data in enumerate(test_dataloader, 1): + partial_input, ECG_input, gt_MI, partial_input_coarse, MI_type = data + partial_input, ECG_input, gt_MI = partial_input.to(DEVICE), ECG_input.to(DEVICE), gt_MI.to(DEVICE) + partial_input_coarse = partial_input_coarse.to(DEVICE) + partial_input = partial_input.permute(0, 2, 1) + + y_MI, y_coarse, y_detail, y_ECG, mu, log_var = network(partial_input[:, 0:7, :], ECG_input) + loss_geo, loss_signal = calculate_reconstruction_loss(y_coarse, y_detail, partial_input_coarse, partial_input, y_ECG, ECG_input) + + Dice = calculate_Dice(y_MI, gt_MI, num_classes=3) + precision, recall, f1_score, roc_auc, MI_size_pre, MI_size_gd, center_distance, AHA_loc_score = evaluate_pointcloud(y_MI, gt_MI, partial_input) + + Dice_Scar.append(Dice[1].cpu().detach().numpy()) + Dice_BZ.append(Dice[2].cpu().detach().numpy()) + precision_Scar.append(precision[1]) + precision_BZ.append(precision[2]) + recall_Scar.append(recall[1]) + recall_BZ.append(recall[2]) + # f1_score_Scar.append(f1_score[1]) + # f1_score_BZ.append(f1_score[2]) + # roc_auc_Scar.append(roc_auc[1]) + # roc_auc_BZ.append(roc_auc[2]) + + pre_MI_size_Scar.append(MI_size_pre[1]) + pre_MI_size_BZ.append(MI_size_pre[2]) + gd_MI_size_Scar.append(MI_size_gd[1]) + gd_MI_size_BZ.append(MI_size_gd[2]) + MI_center_dist.append(center_distance) + AHA_loc_score_list.append(AHA_loc_score) + recon_geo_list.append(loss_geo.cpu().detach().numpy()) + recon_ECG_list.append(loss_signal.cpu().detach().numpy()) + + MI_type_list.append(MI_type[0]) + + visual_check = False + if visual_check: + gd_ECG = ECG_input[0].cpu().detach().numpy() + y_ECG = y_ECG[0].cpu().detach().numpy() + ECG_visual_two(y_ECG, gd_ECG) + y_predict = y_MI[0].cpu().detach().numpy() + y_gd = gt_MI[0].cpu().detach().numpy() + x_input = partial_input[0].cpu().detach().numpy() + y_predict_argmax = np.argmax(y_predict, axis=0) + y_output = y_detail.permute(0, 2, 1)[0].cpu().detach().numpy() + visualize_PC_with_twolabel_rotated(x_input[0:3, 0:args.num_input].transpose(), y_predict_argmax, y_gd, filename='RNmap_gd_pre.pdf') + visualize_two_PC(x_input[0:3, 0:args.num_input].transpose(), y_output[0:3, 0:args.num_input].transpose(), y_gd, filename='PC_recon.pdf') + + list = {'MI_type': MI_type_list, 'Dice_Scar': Dice_Scar, 'Dice_BZ': Dice_BZ, 'precision_Scar': precision_Scar, 'precision_BZ': precision_BZ, + 'recall_Scar': recall_Scar, 'recall_BZ': recall_BZ, + 'pre_MI_size_Scar': pre_MI_size_Scar, 'pre_MI_size_BZ': pre_MI_size_BZ, + 'gd_MI_size_Scar': gd_MI_size_Scar, 'gd_MI_size_BZ': gd_MI_size_BZ + , 'MI_center_dist': MI_center_dist, 'AHA_loc_score': AHA_loc_score_list + , 'recon_geo': recon_geo_list, 'recon_ECG': recon_ECG_list} + + df = pd.DataFrame(list) + df.to_csv('MI_inference_results_sample4.csv', encoding='gbk', index=False) + + print('Lei, well done!') + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument('--partial_root', type=str, default='./Big_data_inference/meta_data/UKB_clinical_data/') + parser.add_argument('--model', type=str, default='log/net_model.pkl') #'log/net_model.pkl' + parser.add_argument('--in_ch', type=int, default=3+4) # coordinate dimension + label index + parser.add_argument('--out_ch', type=int, default=3) # scar, BZ, normal + parser.add_argument('--z_dims', type=int, default=16) + parser.add_argument('--num_input', type=int, default=1024*4) + parser.add_argument('--batch_size', type=int, default=1) + parser.add_argument('--alpha', type=float, default=0.1) + parser.add_argument('--beta', type=float, default=1e-2) + parser.add_argument('--lamda', type=float, default=1) + parser.add_argument('--base_lr', type=float, default=1e-5) #5e-5 + parser.add_argument('--lr_decay_steps', type=int, default=50) + parser.add_argument('--lr_decay_rate', type=float, default=0.5) + parser.add_argument('--weight_decay', type=float, default=1e-6) #1e-3 + parser.add_argument('--epochs', type=int, default=500) + parser.add_argument('--num_workers', type=int, default=1) + parser.add_argument('--log_dir', type=str, default='log') + args = parser.parse_args() + + evaluate(args) +