[390c2f]: / evaluate.py

Download this file

125 lines (103 with data), 6.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import argparse
import torch
from torch.utils.data import DataLoader
import pandas as pd
import os
import numpy as np
os.environ['KMP_DUPLICATE_LIB_OK']='True'
from dataset import LoadDataset
from model import InferenceNet, ECGnet
from utils import visualize_two_PC, ECG_visual_two, visualize_PC_with_twolabel_rotated
from loss import calculate_Dice, evaluate_pointcloud, calculate_inference_loss, calculate_reconstruction_loss
def evaluate(args):
DEVICE = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
test_dataset = LoadDataset(path=args.partial_root, num_input=args.num_input, split='test')
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
# network = ECGnet(in_ch=args.in_ch, out_ch=args.out_ch, num_input=args.num_input, z_dims=args.z_dims)
network = InferenceNet(in_ch=args.in_ch, out_ch=args.out_ch, num_input=args.num_input, z_dims=args.z_dims)
network.load_state_dict(torch.load('log/net_model.pkl'))
network.to(DEVICE)
Dice_Scar, Dice_BZ = [], []
precision_Scar, precision_BZ = [], []
recall_Scar, recall_BZ = [], []
f1_score_Scar, f1_score_BZ = [], []
roc_auc_Scar, roc_auc_BZ = [], []
pre_MI_size_Scar, pre_MI_size_BZ = [], []
gd_MI_size_Scar, gd_MI_size_BZ = [], []
MI_center_dist = []
MI_type_list = []
AHA_loc_score_list = []
recon_geo_list, recon_ECG_list = [], []
# testing: evaluate the mean loss
network.eval()
with torch.no_grad():
for i, data in enumerate(test_dataloader, 1):
partial_input, ECG_input, gt_MI, partial_input_coarse, MI_type = data
partial_input, ECG_input, gt_MI = partial_input.to(DEVICE), ECG_input.to(DEVICE), gt_MI.to(DEVICE)
partial_input_coarse = partial_input_coarse.to(DEVICE)
partial_input = partial_input.permute(0, 2, 1)
y_MI, y_coarse, y_detail, y_ECG, mu, log_var = network(partial_input[:, 0:7, :], ECG_input)
loss_geo, loss_signal = calculate_reconstruction_loss(y_coarse, y_detail, partial_input_coarse, partial_input, y_ECG, ECG_input)
Dice = calculate_Dice(y_MI, gt_MI, num_classes=3)
precision, recall, f1_score, roc_auc, MI_size_pre, MI_size_gd, center_distance, AHA_loc_score = evaluate_pointcloud(y_MI, gt_MI, partial_input)
Dice_Scar.append(Dice[1].cpu().detach().numpy())
Dice_BZ.append(Dice[2].cpu().detach().numpy())
precision_Scar.append(precision[1])
precision_BZ.append(precision[2])
recall_Scar.append(recall[1])
recall_BZ.append(recall[2])
# f1_score_Scar.append(f1_score[1])
# f1_score_BZ.append(f1_score[2])
# roc_auc_Scar.append(roc_auc[1])
# roc_auc_BZ.append(roc_auc[2])
pre_MI_size_Scar.append(MI_size_pre[1])
pre_MI_size_BZ.append(MI_size_pre[2])
gd_MI_size_Scar.append(MI_size_gd[1])
gd_MI_size_BZ.append(MI_size_gd[2])
MI_center_dist.append(center_distance)
AHA_loc_score_list.append(AHA_loc_score)
recon_geo_list.append(loss_geo.cpu().detach().numpy())
recon_ECG_list.append(loss_signal.cpu().detach().numpy())
MI_type_list.append(MI_type[0])
visual_check = False
if visual_check:
gd_ECG = ECG_input[0].cpu().detach().numpy()
y_ECG = y_ECG[0].cpu().detach().numpy()
ECG_visual_two(y_ECG, gd_ECG)
y_predict = y_MI[0].cpu().detach().numpy()
y_gd = gt_MI[0].cpu().detach().numpy()
x_input = partial_input[0].cpu().detach().numpy()
y_predict_argmax = np.argmax(y_predict, axis=0)
y_output = y_detail.permute(0, 2, 1)[0].cpu().detach().numpy()
visualize_PC_with_twolabel_rotated(x_input[0:3, 0:args.num_input].transpose(), y_predict_argmax, y_gd, filename='RNmap_gd_pre.pdf')
visualize_two_PC(x_input[0:3, 0:args.num_input].transpose(), y_output[0:3, 0:args.num_input].transpose(), y_gd, filename='PC_recon.pdf')
list = {'MI_type': MI_type_list, 'Dice_Scar': Dice_Scar, 'Dice_BZ': Dice_BZ, 'precision_Scar': precision_Scar, 'precision_BZ': precision_BZ,
'recall_Scar': recall_Scar, 'recall_BZ': recall_BZ,
'pre_MI_size_Scar': pre_MI_size_Scar, 'pre_MI_size_BZ': pre_MI_size_BZ,
'gd_MI_size_Scar': gd_MI_size_Scar, 'gd_MI_size_BZ': gd_MI_size_BZ
, 'MI_center_dist': MI_center_dist, 'AHA_loc_score': AHA_loc_score_list
, 'recon_geo': recon_geo_list, 'recon_ECG': recon_ECG_list}
df = pd.DataFrame(list)
df.to_csv('MI_inference_results_sample4.csv', encoding='gbk', index=False)
print('Lei, well done!')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--partial_root', type=str, default='./Big_data_inference/meta_data/UKB_clinical_data/')
parser.add_argument('--model', type=str, default='log/net_model.pkl') #'log/net_model.pkl'
parser.add_argument('--in_ch', type=int, default=3+4) # coordinate dimension + label index
parser.add_argument('--out_ch', type=int, default=3) # scar, BZ, normal
parser.add_argument('--z_dims', type=int, default=16)
parser.add_argument('--num_input', type=int, default=1024*4)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--alpha', type=float, default=0.1)
parser.add_argument('--beta', type=float, default=1e-2)
parser.add_argument('--lamda', type=float, default=1)
parser.add_argument('--base_lr', type=float, default=1e-5) #5e-5
parser.add_argument('--lr_decay_steps', type=int, default=50)
parser.add_argument('--lr_decay_rate', type=float, default=0.5)
parser.add_argument('--weight_decay', type=float, default=1e-6) #1e-3
parser.add_argument('--epochs', type=int, default=500)
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--log_dir', type=str, default='log')
args = parser.parse_args()
evaluate(args)