Diff of /srscn.py [000000] .. [1ee192]

Switch to unified view

a b/srscn.py
1
# -*- coding: utf-8 -*-
2
3
4
from __future__ import print_function, division, absolute_import, unicode_literals
5
from core import util
6
from core import ACNN_pos as ACNN
7
from core import image_util_pos as image_util
8
from core import unet_pos as unet
9
import numpy as np
10
import click
11
import os
12
import logging
13
from datetime import datetime
14
15
t = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
16
17
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
18
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
19
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
20
21
CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help'])
22
23
24
@click.command(context_settings=CONTEXT_SETTINGS)
25
@click.option('--saliency', default='SRSCN', help='Key word for this running time')
26
@click.option('--run_times', default=1, type=click.IntRange(min=1, clamp=True), help='network training times')
27
@click.option('--time', default=t, help='the current time or the time when the model to restore was trained')
28
@click.option('--trainer_learning_rate', default=0.001, type=click.FloatRange(min=1e-8, clamp=True),
29
              help='network learning rate')
30
@click.option('--train_validation_batch_size', default=5, type=click.IntRange(min=1),
31
              help='the number of validation cases')
32
@click.option('--test_n_files', default=15, type=click.IntRange(min=1), help='the number of test cases')
33
@click.option('--train_original_search_path', default='../dataset/train_original/*.nii.gz',
34
              help='search pattern to find all original training data and label images')
35
@click.option('--train_search_path', default='../dataset/train_data_2d/*.png',
36
              help='search pattern to find all training data and label images')
37
@click.option('--train_data_suffix', default='_img.png', help='suffix pattern for the training data images')
38
@click.option('--train_label_suffix', default='_lab.png', help='suffix pattern for the training label images')
39
@click.option('--train_shuffle_data', default=True, type=bool,
40
              help='whether the order of training files should be randomized after each epoch')
41
@click.option('--train_crop_patch', default=True, type=bool,
42
              help='whether patches of a certain size need to be cropped for training')
43
@click.option('--train_patch_size', default=(-1, -1, -1),
44
              type=(click.IntRange(min=-1), click.IntRange(min=-1), click.IntRange(min=-1)),
45
              help='size of the training patches')
46
@click.option('--train_channels', default=1, type=click.IntRange(min=1), help='number of training data channels')
47
@click.option('--train_n_class', default=4, type=click.IntRange(min=1),
48
              help='number of training label classes, including the background')
49
@click.option('--train_contain_foreground', default=False, type=bool,
50
              help='if the training patches should contain foreground')
51
@click.option('--train_label_intensity', default=(0, 88, 200, 244), multiple=True,
52
              type=click.IntRange(min=0), help='list of intensities of the training ground truths')
53
@click.option('--net_layers', default=5, type=click.IntRange(min=2),
54
              help='number of convolutional blocks in the down-sampling path')
55
@click.option('--net_features_root', default=32, type=click.IntRange(min=1),
56
              help='number of features of the first convolution layer')
57
@click.option('--net_cost_name', default=u'exponential_logarithmic',
58
              type=click.Choice(["cross_entropy", "weighted_cross_entropy", "dice_loss",
59
                                 "generalized_dice_loss", "cross_entropy+dice_loss",
60
                                 "weighted_cross_entropy+generalized_dice_loss",
61
                                 "exponential_logarithmic"]), help='type of the cost function')
62
@click.option('--net_regularizer_type', default='anatomical_constraint_cae',
63
              type=click.Choice(['L2_norm', 'L1_norm', 'anatomical_constraint_acnn',
64
                                 'anatomical_constraint_cae']),
65
              help='type of regularization')
66
@click.option('--net_regularization_coefficient', default=5e-4, type=click.FloatRange(min=0),
67
              help='regularization coefficient')
68
@click.option('--net_acnn_model_path', default='./autoencoder_trained_%s',
69
              help='path where to restore the ACNN auto-encoder parameters for regularization')
70
@click.option('--trainer_batch_size', default=8, type=click.IntRange(min=1, clamp=True),
71
              help='batch size for each training iteration')
72
@click.option('--trainer_optimizer_name', default='adam', type=click.Choice(['momentum', 'adam']),
73
              help='type of the optimizer to use (momentum or adam)')
74
@click.option('--train_model_path', default='./unet_trained_%s_%s/No_%d', help='path where to store checkpoints')
75
@click.option('--train_training_iters', default=638, type=click.IntRange(min=1),
76
              help='number of training iterations during each epoch')
77
@click.option('--train_epochs', default=30, type=click.IntRange(min=1), help='number of epochs')
78
@click.option('--train_dropout_rate', default=0.2, type=click.FloatRange(min=0, max=1), help='dropout probability')
79
@click.option('--train_clip_gradient', default=False, type=bool,
80
              help='whether to apply gradient clipping with L2 norm threshold 1.0')
81
@click.option('--train_display_step', default=200, type=click.IntRange(min=1),
82
              help='number of steps till outputting stats')
83
@click.option('--train_prediction_path', default='./validation_prediction_%s_%s/No_%d',
84
              help='path where to save predictions on each epoch')
85
@click.option('--train_restore', default=False, type=bool, help='whether previous model checkpoint need restoring')
86
@click.option('--test_search_path', default='../dataset/test_data/*.nii.gz',
87
              help='a search pattern to find all test data and label images')
88
@click.option('--test_data_suffix', default='_img.nii.gz', help='suffix pattern for the test data images')
89
@click.option('--test_label_suffix', default='_lab.nii.gz', help='suffix pattern for the test label images')
90
@click.option('--test_shuffle_data', default=False, type=bool,
91
              help='whether the order of the loaded test files path should be randomized')
92
@click.option('--test_channels', default=1, type=click.IntRange(min=1), help='number of test data channels')
93
@click.option('--test_n_class', default=4, type=click.IntRange(min=1),
94
              help='number of test label classes, including the background')
95
@click.option('--test_label_intensity', default=(0, 88, 200, 244), multiple=True,
96
              type=click.IntRange(min=0),
97
              help='tuple of intensities of the test ground truths')
98
@click.option('--test_prediction_path', default=u'./test_prediction_%s_%s/No_%d',
99
              help='path where to save test predictions')
100
@click.option('--val_search_path', default='../dataset/val_data/*.nii.gz',
101
              help='a search pattern to find all validation data and label images')
102
@click.option('--val_data_suffix', default='_img.nii.gz', help='suffix pattern for the val data images')
103
@click.option('--val_label_suffix', default='_lab.nii.gz', help='suffix pattern for the val label images')
104
@click.option('--val_shuffle_data', default=False, type=bool,
105
              help='whether the order of the loaded val files path should be randomized')
106
@click.option('--val_channels', default=1, type=click.IntRange(min=1), help='number of val data channels')
107
@click.option('--val_n_class', default=4, type=click.IntRange(min=1),
108
              help='number of val label classes, including the background')
109
@click.option('--val_label_intensity', default=(0, 88, 200, 244), multiple=True,
110
              type=click.IntRange(min=0),
111
              help='tuple of intensities of the test ground truths')
112
@click.option('--train_center_crop', default=True, type=bool,
113
              help='whether to extract roi from center during training')
114
@click.option('--train_center_roi', default=(120, 120, 1), multiple=True, type=click.IntRange(min=0),
115
              help='roi size you want to extract during training')
116
@click.option('--test_center_crop', default=True, type=bool,
117
              help='whether to extract roi from center while testing')
118
@click.option('--test_center_roi', default=(120, 120, 1), multiple=True, type=click.IntRange(min=0),
119
              help='roi size you want to extract while testing')
120
@click.option('--pos_parameter', default=5e-4, type=click.FloatRange(min=0),
121
              help='position loss weight')
122
def run(run_times, time, train_search_path, train_data_suffix, train_label_suffix, train_shuffle_data, train_crop_patch, train_patch_size, train_channels, train_n_class, train_contain_foreground, train_label_intensity, train_original_search_path,
123
         net_layers, net_features_root, net_cost_name, net_regularizer_type, net_regularization_coefficient, net_acnn_model_path,
124
        trainer_batch_size, trainer_optimizer_name, trainer_learning_rate, train_validation_batch_size, train_model_path, train_training_iters, train_epochs, train_dropout_rate, train_clip_gradient, train_display_step, train_prediction_path, train_restore,
125
        test_search_path, test_data_suffix, test_label_suffix, test_shuffle_data,
126
        test_channels, test_n_class, test_label_intensity, test_n_files, test_prediction_path,
127
        val_search_path, val_data_suffix, val_label_suffix, val_shuffle_data,
128
        val_channels, val_n_class, val_label_intensity, saliency, train_center_crop, train_center_roi, test_center_crop, test_center_roi, pos_parameter
129
        ):
130
    if train_restore:
131
        assert time != t, "The time when the model to restore was trained is not the time now! "
132
133
    train_acc_table = np.array([])
134
    train_dice_table = np.array([])
135
    train_auc_table = np.array([])
136
    train_sens_table = np.array([])
137
    train_spec_table = np.array([])
138
    test_acc_table = np.array([])
139
    test_dice_table = np.array([])
140
    test_auc_table = np.array([])
141
142
    for i in range(run_times):
143
        train_data_provider = image_util.ImageDataProvider(search_path=train_search_path,
144
                                                           data_suffix=train_data_suffix,
145
                                                           label_suffix=train_label_suffix,
146
                                                           shuffle_data=train_shuffle_data,
147
                                                           crop_patch=train_crop_patch,
148
                                                           patch_size=train_patch_size,
149
                                                           channels=train_channels,
150
                                                           n_class=train_n_class,
151
                                                           contain_foreground=train_contain_foreground,
152
                                                           label_intensity=train_label_intensity,
153
                                                           center_crop=train_center_crop,
154
                                                           center_roi=train_center_roi,
155
                                                           inference_phase=False
156
                                                           )
157
158
        train_original_data_provider = image_util.ImageDataProvider(search_path=train_original_search_path,
159
                                                                    data_suffix=test_data_suffix,
160
                                                                    label_suffix=test_label_suffix,
161
                                                                    shuffle_data=False,
162
                                                                    crop_patch=False,
163
                                                                    patch_size=train_patch_size,
164
                                                                    channels=train_channels,
165
                                                                    n_class=train_n_class,
166
                                                                    contain_foreground=train_contain_foreground,
167
                                                                    label_intensity=train_label_intensity,
168
                                                                    center_crop=train_center_crop,
169
                                                                    center_roi=train_center_roi,
170
                                                                    inference_phase=True
171
                                                           )
172
173
        test_data_provider = image_util.ImageDataProvider(search_path=test_search_path,
174
                                                          data_suffix=test_data_suffix,
175
                                                          label_suffix=test_label_suffix,
176
                                                          shuffle_data=test_shuffle_data,
177
                                                          crop_patch=False,
178
                                                          channels=test_channels,
179
                                                          n_class=test_n_class,
180
                                                          label_intensity=test_label_intensity,
181
                                                          center_crop=test_center_crop,
182
                                                          center_roi=test_center_roi,
183
                                                          inference_phase=True)
184
185
        val_data_provider = image_util.ImageDataProvider(search_path=val_search_path,
186
                                                         data_suffix=val_data_suffix,
187
                                                         label_suffix=val_label_suffix,
188
                                                         shuffle_data=val_shuffle_data,
189
                                                         crop_patch=False,
190
                                                         channels=val_channels,
191
                                                         n_class=val_n_class,
192
                                                         label_intensity=val_label_intensity,
193
                                                         center_crop=test_center_crop,
194
                                                         center_roi=test_center_roi,
195
                                                         inference_phase=True)
196
197
        if net_regularizer_type == 'anatomical_constraint_acnn' or net_regularizer_type == 'anatomical_constraint_cae':
198
            acnn = ACNN.AutoEncoder(batch_size=trainer_batch_size)
199
            acnn_save_path = acnn.train(train_data_provider, net_acnn_model_path % saliency)
200
201
        net = unet.UNet(layers=net_layers, features_root=net_features_root, channels=train_channels,
202
                        n_class=train_n_class, batch_size=trainer_batch_size, cost_name=net_cost_name,
203
                        pos_parameter=pos_parameter,
204
                        cost_kwargs={'regularizer_type': net_regularizer_type,
205
                                     'regularization_coefficient': net_regularization_coefficient,
206
                                     'acnn_model_path': (net_acnn_model_path % saliency)})
207
208
        trainer = unet.Trainer(net, batch_size=trainer_batch_size, optimizer_name=trainer_optimizer_name,
209
                               opt_kwargs={'learning_rate': trainer_learning_rate})
210
211
        path, train_acc, train_dice, train_auc, train_sens, train_spec = trainer.train(train_data_provider,
212
                                                                                       val_data_provider,
213
                                                                                       train_original_data_provider,
214
                                                                                       train_validation_batch_size,
215
                                                                                       model_path=train_model_path % (
216
                                                                                           saliency, time, i),
217
                                                                                       training_iters=train_training_iters,
218
                                                                                       epochs=train_epochs,
219
                                                                                       dropout=train_dropout_rate,
220
                                                                                       clip_gradient=train_clip_gradient,
221
                                                                                       display_step=train_display_step,
222
                                                                                       prediction_path=train_prediction_path % (
223
                                                                                           saliency, time, i),
224
                                                                                       restore=train_restore)
225
        train_acc_table = np.hstack((train_acc_table, train_acc))
226
        train_dice_table = np.hstack((train_dice_table, train_dice))
227
        train_auc_table = np.hstack((train_auc_table, train_auc))
228
        train_sens_table = np.hstack((train_sens_table, train_sens))
229
        train_spec_table = np.hstack((train_spec_table, train_spec))
230
231
        train_summary_path = './train_summary_%s_%s' % (saliency, time)
232
        if not os.path.exists(train_summary_path):
233
            logging.info('Allocating {:}'.format(train_summary_path))
234
            os.makedirs(train_summary_path)
235
        np.savez(os.path.join(train_summary_path, 'No_%d.npz' % i), acc=train_acc, dice=train_dice, auc=train_auc,
236
                 sens=train_sens, spec=train_spec)
237
238
        test_data_provider.reset_index()
239
        test_data, test_labels, test_affine, _ = test_data_provider(test_n_files)
240
        predictions = net.predict(path, test_data)
241
242
        test_acc = unet.acc_rate(predictions, test_labels)
243
        test_dice = unet.dice_score(predictions, test_labels)
244
        test_auc = unet.auc_score(predictions, test_labels)
245
246
        test_acc_table = np.hstack((test_acc_table, test_acc))
247
        test_dice_table = np.hstack((test_dice_table, test_dice))
248
        test_auc_table = np.hstack((test_auc_table, test_auc))
249
250
        dice_score_path = './dice_score_%s_%s' % (saliency, time)
251
        if not os.path.exists(dice_score_path):
252
            logging.info('Allocating {:}'.format(dice_score_path))
253
            os.makedirs(dice_score_path)
254
        np.save(os.path.join(dice_score_path, 'No_%d.npy' % i), test_dice)
255
        print("Mean Dice score= {:.4f}".format(np.mean(test_dice)))
256
257
        for j in range(len(test_data)):
258
            test_data[j] = np.expand_dims(test_data[j], axis=0).transpose((0, 2, 3, 1, 4))
259
            test_labels[j] = np.expand_dims(test_labels[j], axis=0).transpose((0, 2, 3, 1, 4))
260
            predictions[j] = np.expand_dims(predictions[j], axis=0).transpose((0, 2, 3, 1, 4))
261
262
        util.save_prediction(test_data, test_labels, predictions, test_prediction_path % (saliency, time, i))
263
        util.save_prediction_1(predictions, test_affine, test_prediction_path % (saliency, time, i))
264
        util.save_prediction_2(predictions, test_prediction_path % (saliency, time, i))
265
266
        test_summary_path = './test_summary_%s_%s' % (saliency, time)
267
        if not os.path.exists(test_summary_path):
268
            logging.info('Allocating {:}'.format(test_summary_path))
269
            os.makedirs(test_summary_path)
270
        np.savez(os.path.join(test_summary_path, 'No_%d.npz' % i), acc=test_acc, dice=test_dice, auc=test_auc)
271
272
    mean_train_acc = np.mean(np.reshape(train_acc_table, [run_times, -1]), axis=0)
273
    mean_train_dice = np.mean(np.reshape(train_dice_table, [run_times, -1]), axis=0)
274
    mean_train_auc = np.mean(np.reshape(train_auc_table, [run_times, -1]), axis=0)
275
    mean_train_sens = np.mean(np.reshape(train_sens_table, [run_times, -1]), axis=0)
276
    mean_train_spec = np.mean(np.reshape(train_spec_table, [run_times, -1]), axis=0)
277
    mean_test_acc = np.mean(np.reshape(test_acc_table, [run_times, -1]), axis=0)
278
    mean_test_dice = np.mean(np.reshape(train_dice_table, [run_times, -1]), axis=0)
279
    mean_test_auc = np.mean(np.reshape(train_auc_table, [run_times, -1]), axis=0)
280
    np.savez('./mean_train_summary_%s_%s.npz' % (saliency, time), acc=mean_train_acc, auc=mean_train_auc,
281
             sens=mean_train_sens, spec=mean_train_spec, dice=mean_train_dice)
282
    np.savez('./mean_test_summary_%s_%s.npz' % (saliency, time), acc=mean_test_acc, auc=mean_test_auc,
283
             dice=mean_test_dice)
284
285
286
if __name__ == '__main__':
287
    run()