[1ee192]: / srscn.py

Download this file

288 lines (260 with data), 20.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# -*- coding: utf-8 -*-
from __future__ import print_function, division, absolute_import, unicode_literals
from core import util
from core import ACNN_pos as ACNN
from core import image_util_pos as image_util
from core import unet_pos as unet
import numpy as np
import click
import os
import logging
from datetime import datetime
t = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help'])
@click.command(context_settings=CONTEXT_SETTINGS)
@click.option('--saliency', default='SRSCN', help='Key word for this running time')
@click.option('--run_times', default=1, type=click.IntRange(min=1, clamp=True), help='network training times')
@click.option('--time', default=t, help='the current time or the time when the model to restore was trained')
@click.option('--trainer_learning_rate', default=0.001, type=click.FloatRange(min=1e-8, clamp=True),
help='network learning rate')
@click.option('--train_validation_batch_size', default=5, type=click.IntRange(min=1),
help='the number of validation cases')
@click.option('--test_n_files', default=15, type=click.IntRange(min=1), help='the number of test cases')
@click.option('--train_original_search_path', default='../dataset/train_original/*.nii.gz',
help='search pattern to find all original training data and label images')
@click.option('--train_search_path', default='../dataset/train_data_2d/*.png',
help='search pattern to find all training data and label images')
@click.option('--train_data_suffix', default='_img.png', help='suffix pattern for the training data images')
@click.option('--train_label_suffix', default='_lab.png', help='suffix pattern for the training label images')
@click.option('--train_shuffle_data', default=True, type=bool,
help='whether the order of training files should be randomized after each epoch')
@click.option('--train_crop_patch', default=True, type=bool,
help='whether patches of a certain size need to be cropped for training')
@click.option('--train_patch_size', default=(-1, -1, -1),
type=(click.IntRange(min=-1), click.IntRange(min=-1), click.IntRange(min=-1)),
help='size of the training patches')
@click.option('--train_channels', default=1, type=click.IntRange(min=1), help='number of training data channels')
@click.option('--train_n_class', default=4, type=click.IntRange(min=1),
help='number of training label classes, including the background')
@click.option('--train_contain_foreground', default=False, type=bool,
help='if the training patches should contain foreground')
@click.option('--train_label_intensity', default=(0, 88, 200, 244), multiple=True,
type=click.IntRange(min=0), help='list of intensities of the training ground truths')
@click.option('--net_layers', default=5, type=click.IntRange(min=2),
help='number of convolutional blocks in the down-sampling path')
@click.option('--net_features_root', default=32, type=click.IntRange(min=1),
help='number of features of the first convolution layer')
@click.option('--net_cost_name', default=u'exponential_logarithmic',
type=click.Choice(["cross_entropy", "weighted_cross_entropy", "dice_loss",
"generalized_dice_loss", "cross_entropy+dice_loss",
"weighted_cross_entropy+generalized_dice_loss",
"exponential_logarithmic"]), help='type of the cost function')
@click.option('--net_regularizer_type', default='anatomical_constraint_cae',
type=click.Choice(['L2_norm', 'L1_norm', 'anatomical_constraint_acnn',
'anatomical_constraint_cae']),
help='type of regularization')
@click.option('--net_regularization_coefficient', default=5e-4, type=click.FloatRange(min=0),
help='regularization coefficient')
@click.option('--net_acnn_model_path', default='./autoencoder_trained_%s',
help='path where to restore the ACNN auto-encoder parameters for regularization')
@click.option('--trainer_batch_size', default=8, type=click.IntRange(min=1, clamp=True),
help='batch size for each training iteration')
@click.option('--trainer_optimizer_name', default='adam', type=click.Choice(['momentum', 'adam']),
help='type of the optimizer to use (momentum or adam)')
@click.option('--train_model_path', default='./unet_trained_%s_%s/No_%d', help='path where to store checkpoints')
@click.option('--train_training_iters', default=638, type=click.IntRange(min=1),
help='number of training iterations during each epoch')
@click.option('--train_epochs', default=30, type=click.IntRange(min=1), help='number of epochs')
@click.option('--train_dropout_rate', default=0.2, type=click.FloatRange(min=0, max=1), help='dropout probability')
@click.option('--train_clip_gradient', default=False, type=bool,
help='whether to apply gradient clipping with L2 norm threshold 1.0')
@click.option('--train_display_step', default=200, type=click.IntRange(min=1),
help='number of steps till outputting stats')
@click.option('--train_prediction_path', default='./validation_prediction_%s_%s/No_%d',
help='path where to save predictions on each epoch')
@click.option('--train_restore', default=False, type=bool, help='whether previous model checkpoint need restoring')
@click.option('--test_search_path', default='../dataset/test_data/*.nii.gz',
help='a search pattern to find all test data and label images')
@click.option('--test_data_suffix', default='_img.nii.gz', help='suffix pattern for the test data images')
@click.option('--test_label_suffix', default='_lab.nii.gz', help='suffix pattern for the test label images')
@click.option('--test_shuffle_data', default=False, type=bool,
help='whether the order of the loaded test files path should be randomized')
@click.option('--test_channels', default=1, type=click.IntRange(min=1), help='number of test data channels')
@click.option('--test_n_class', default=4, type=click.IntRange(min=1),
help='number of test label classes, including the background')
@click.option('--test_label_intensity', default=(0, 88, 200, 244), multiple=True,
type=click.IntRange(min=0),
help='tuple of intensities of the test ground truths')
@click.option('--test_prediction_path', default=u'./test_prediction_%s_%s/No_%d',
help='path where to save test predictions')
@click.option('--val_search_path', default='../dataset/val_data/*.nii.gz',
help='a search pattern to find all validation data and label images')
@click.option('--val_data_suffix', default='_img.nii.gz', help='suffix pattern for the val data images')
@click.option('--val_label_suffix', default='_lab.nii.gz', help='suffix pattern for the val label images')
@click.option('--val_shuffle_data', default=False, type=bool,
help='whether the order of the loaded val files path should be randomized')
@click.option('--val_channels', default=1, type=click.IntRange(min=1), help='number of val data channels')
@click.option('--val_n_class', default=4, type=click.IntRange(min=1),
help='number of val label classes, including the background')
@click.option('--val_label_intensity', default=(0, 88, 200, 244), multiple=True,
type=click.IntRange(min=0),
help='tuple of intensities of the test ground truths')
@click.option('--train_center_crop', default=True, type=bool,
help='whether to extract roi from center during training')
@click.option('--train_center_roi', default=(120, 120, 1), multiple=True, type=click.IntRange(min=0),
help='roi size you want to extract during training')
@click.option('--test_center_crop', default=True, type=bool,
help='whether to extract roi from center while testing')
@click.option('--test_center_roi', default=(120, 120, 1), multiple=True, type=click.IntRange(min=0),
help='roi size you want to extract while testing')
@click.option('--pos_parameter', default=5e-4, type=click.FloatRange(min=0),
help='position loss weight')
def run(run_times, time, train_search_path, train_data_suffix, train_label_suffix, train_shuffle_data, train_crop_patch, train_patch_size, train_channels, train_n_class, train_contain_foreground, train_label_intensity, train_original_search_path,
net_layers, net_features_root, net_cost_name, net_regularizer_type, net_regularization_coefficient, net_acnn_model_path,
trainer_batch_size, trainer_optimizer_name, trainer_learning_rate, train_validation_batch_size, train_model_path, train_training_iters, train_epochs, train_dropout_rate, train_clip_gradient, train_display_step, train_prediction_path, train_restore,
test_search_path, test_data_suffix, test_label_suffix, test_shuffle_data,
test_channels, test_n_class, test_label_intensity, test_n_files, test_prediction_path,
val_search_path, val_data_suffix, val_label_suffix, val_shuffle_data,
val_channels, val_n_class, val_label_intensity, saliency, train_center_crop, train_center_roi, test_center_crop, test_center_roi, pos_parameter
):
if train_restore:
assert time != t, "The time when the model to restore was trained is not the time now! "
train_acc_table = np.array([])
train_dice_table = np.array([])
train_auc_table = np.array([])
train_sens_table = np.array([])
train_spec_table = np.array([])
test_acc_table = np.array([])
test_dice_table = np.array([])
test_auc_table = np.array([])
for i in range(run_times):
train_data_provider = image_util.ImageDataProvider(search_path=train_search_path,
data_suffix=train_data_suffix,
label_suffix=train_label_suffix,
shuffle_data=train_shuffle_data,
crop_patch=train_crop_patch,
patch_size=train_patch_size,
channels=train_channels,
n_class=train_n_class,
contain_foreground=train_contain_foreground,
label_intensity=train_label_intensity,
center_crop=train_center_crop,
center_roi=train_center_roi,
inference_phase=False
)
train_original_data_provider = image_util.ImageDataProvider(search_path=train_original_search_path,
data_suffix=test_data_suffix,
label_suffix=test_label_suffix,
shuffle_data=False,
crop_patch=False,
patch_size=train_patch_size,
channels=train_channels,
n_class=train_n_class,
contain_foreground=train_contain_foreground,
label_intensity=train_label_intensity,
center_crop=train_center_crop,
center_roi=train_center_roi,
inference_phase=True
)
test_data_provider = image_util.ImageDataProvider(search_path=test_search_path,
data_suffix=test_data_suffix,
label_suffix=test_label_suffix,
shuffle_data=test_shuffle_data,
crop_patch=False,
channels=test_channels,
n_class=test_n_class,
label_intensity=test_label_intensity,
center_crop=test_center_crop,
center_roi=test_center_roi,
inference_phase=True)
val_data_provider = image_util.ImageDataProvider(search_path=val_search_path,
data_suffix=val_data_suffix,
label_suffix=val_label_suffix,
shuffle_data=val_shuffle_data,
crop_patch=False,
channels=val_channels,
n_class=val_n_class,
label_intensity=val_label_intensity,
center_crop=test_center_crop,
center_roi=test_center_roi,
inference_phase=True)
if net_regularizer_type == 'anatomical_constraint_acnn' or net_regularizer_type == 'anatomical_constraint_cae':
acnn = ACNN.AutoEncoder(batch_size=trainer_batch_size)
acnn_save_path = acnn.train(train_data_provider, net_acnn_model_path % saliency)
net = unet.UNet(layers=net_layers, features_root=net_features_root, channels=train_channels,
n_class=train_n_class, batch_size=trainer_batch_size, cost_name=net_cost_name,
pos_parameter=pos_parameter,
cost_kwargs={'regularizer_type': net_regularizer_type,
'regularization_coefficient': net_regularization_coefficient,
'acnn_model_path': (net_acnn_model_path % saliency)})
trainer = unet.Trainer(net, batch_size=trainer_batch_size, optimizer_name=trainer_optimizer_name,
opt_kwargs={'learning_rate': trainer_learning_rate})
path, train_acc, train_dice, train_auc, train_sens, train_spec = trainer.train(train_data_provider,
val_data_provider,
train_original_data_provider,
train_validation_batch_size,
model_path=train_model_path % (
saliency, time, i),
training_iters=train_training_iters,
epochs=train_epochs,
dropout=train_dropout_rate,
clip_gradient=train_clip_gradient,
display_step=train_display_step,
prediction_path=train_prediction_path % (
saliency, time, i),
restore=train_restore)
train_acc_table = np.hstack((train_acc_table, train_acc))
train_dice_table = np.hstack((train_dice_table, train_dice))
train_auc_table = np.hstack((train_auc_table, train_auc))
train_sens_table = np.hstack((train_sens_table, train_sens))
train_spec_table = np.hstack((train_spec_table, train_spec))
train_summary_path = './train_summary_%s_%s' % (saliency, time)
if not os.path.exists(train_summary_path):
logging.info('Allocating {:}'.format(train_summary_path))
os.makedirs(train_summary_path)
np.savez(os.path.join(train_summary_path, 'No_%d.npz' % i), acc=train_acc, dice=train_dice, auc=train_auc,
sens=train_sens, spec=train_spec)
test_data_provider.reset_index()
test_data, test_labels, test_affine, _ = test_data_provider(test_n_files)
predictions = net.predict(path, test_data)
test_acc = unet.acc_rate(predictions, test_labels)
test_dice = unet.dice_score(predictions, test_labels)
test_auc = unet.auc_score(predictions, test_labels)
test_acc_table = np.hstack((test_acc_table, test_acc))
test_dice_table = np.hstack((test_dice_table, test_dice))
test_auc_table = np.hstack((test_auc_table, test_auc))
dice_score_path = './dice_score_%s_%s' % (saliency, time)
if not os.path.exists(dice_score_path):
logging.info('Allocating {:}'.format(dice_score_path))
os.makedirs(dice_score_path)
np.save(os.path.join(dice_score_path, 'No_%d.npy' % i), test_dice)
print("Mean Dice score= {:.4f}".format(np.mean(test_dice)))
for j in range(len(test_data)):
test_data[j] = np.expand_dims(test_data[j], axis=0).transpose((0, 2, 3, 1, 4))
test_labels[j] = np.expand_dims(test_labels[j], axis=0).transpose((0, 2, 3, 1, 4))
predictions[j] = np.expand_dims(predictions[j], axis=0).transpose((0, 2, 3, 1, 4))
util.save_prediction(test_data, test_labels, predictions, test_prediction_path % (saliency, time, i))
util.save_prediction_1(predictions, test_affine, test_prediction_path % (saliency, time, i))
util.save_prediction_2(predictions, test_prediction_path % (saliency, time, i))
test_summary_path = './test_summary_%s_%s' % (saliency, time)
if not os.path.exists(test_summary_path):
logging.info('Allocating {:}'.format(test_summary_path))
os.makedirs(test_summary_path)
np.savez(os.path.join(test_summary_path, 'No_%d.npz' % i), acc=test_acc, dice=test_dice, auc=test_auc)
mean_train_acc = np.mean(np.reshape(train_acc_table, [run_times, -1]), axis=0)
mean_train_dice = np.mean(np.reshape(train_dice_table, [run_times, -1]), axis=0)
mean_train_auc = np.mean(np.reshape(train_auc_table, [run_times, -1]), axis=0)
mean_train_sens = np.mean(np.reshape(train_sens_table, [run_times, -1]), axis=0)
mean_train_spec = np.mean(np.reshape(train_spec_table, [run_times, -1]), axis=0)
mean_test_acc = np.mean(np.reshape(test_acc_table, [run_times, -1]), axis=0)
mean_test_dice = np.mean(np.reshape(train_dice_table, [run_times, -1]), axis=0)
mean_test_auc = np.mean(np.reshape(train_auc_table, [run_times, -1]), axis=0)
np.savez('./mean_train_summary_%s_%s.npz' % (saliency, time), acc=mean_train_acc, auc=mean_train_auc,
sens=mean_train_sens, spec=mean_train_spec, dice=mean_train_dice)
np.savez('./mean_test_summary_%s_%s.npz' % (saliency, time), acc=mean_test_acc, auc=mean_test_auc,
dice=mean_test_dice)
if __name__ == '__main__':
run()