# -*- coding: utf-8 -*-
from __future__ import print_function, division, absolute_import, unicode_literals
from core import util
from core import ACNN_pos as ACNN
from core import image_util_pos as image_util
from core import unet_pos as unet
import numpy as np
import click
import os
import logging
from datetime import datetime
t = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = '2'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help'])
@click.command(context_settings=CONTEXT_SETTINGS)
@click.option('--saliency', default='SRSCN', help='Key word for this running time')
@click.option('--run_times', default=1, type=click.IntRange(min=1, clamp=True), help='network training times')
@click.option('--time', default=t, help='the current time or the time when the model to restore was trained')
@click.option('--trainer_learning_rate', default=0.001, type=click.FloatRange(min=1e-8, clamp=True),
help='network learning rate')
@click.option('--train_validation_batch_size', default=5, type=click.IntRange(min=1),
help='the number of validation cases')
@click.option('--test_n_files', default=15, type=click.IntRange(min=1), help='the number of test cases')
@click.option('--train_original_search_path', default='../dataset/train_original/*.nii.gz',
help='search pattern to find all original training data and label images')
@click.option('--train_search_path', default='../dataset/train_data_2d/*.png',
help='search pattern to find all training data and label images')
@click.option('--train_data_suffix', default='_img.png', help='suffix pattern for the training data images')
@click.option('--train_label_suffix', default='_lab.png', help='suffix pattern for the training label images')
@click.option('--train_shuffle_data', default=True, type=bool,
help='whether the order of training files should be randomized after each epoch')
@click.option('--train_crop_patch', default=True, type=bool,
help='whether patches of a certain size need to be cropped for training')
@click.option('--train_patch_size', default=(-1, -1, -1),
type=(click.IntRange(min=-1), click.IntRange(min=-1), click.IntRange(min=-1)),
help='size of the training patches')
@click.option('--train_channels', default=1, type=click.IntRange(min=1), help='number of training data channels')
@click.option('--train_n_class', default=4, type=click.IntRange(min=1),
help='number of training label classes, including the background')
@click.option('--train_contain_foreground', default=False, type=bool,
help='if the training patches should contain foreground')
@click.option('--train_label_intensity', default=(0, 88, 200, 244), multiple=True,
type=click.IntRange(min=0), help='list of intensities of the training ground truths')
@click.option('--net_layers', default=5, type=click.IntRange(min=2),
help='number of convolutional blocks in the down-sampling path')
@click.option('--net_features_root', default=32, type=click.IntRange(min=1),
help='number of features of the first convolution layer')
@click.option('--net_cost_name', default=u'exponential_logarithmic',
type=click.Choice(["cross_entropy", "weighted_cross_entropy", "dice_loss",
"generalized_dice_loss", "cross_entropy+dice_loss",
"weighted_cross_entropy+generalized_dice_loss",
"exponential_logarithmic"]), help='type of the cost function')
@click.option('--net_regularizer_type', default='anatomical_constraint_cae',
type=click.Choice(['L2_norm', 'L1_norm', 'anatomical_constraint_acnn',
'anatomical_constraint_cae']),
help='type of regularization')
@click.option('--net_regularization_coefficient', default=5e-4, type=click.FloatRange(min=0),
help='regularization coefficient')
@click.option('--net_acnn_model_path', default='./autoencoder_trained_%s',
help='path where to restore the ACNN auto-encoder parameters for regularization')
@click.option('--trainer_batch_size', default=8, type=click.IntRange(min=1, clamp=True),
help='batch size for each training iteration')
@click.option('--trainer_optimizer_name', default='adam', type=click.Choice(['momentum', 'adam']),
help='type of the optimizer to use (momentum or adam)')
@click.option('--train_model_path', default='./unet_trained_%s_%s/No_%d', help='path where to store checkpoints')
@click.option('--train_training_iters', default=638, type=click.IntRange(min=1),
help='number of training iterations during each epoch')
@click.option('--train_epochs', default=30, type=click.IntRange(min=1), help='number of epochs')
@click.option('--train_dropout_rate', default=0.2, type=click.FloatRange(min=0, max=1), help='dropout probability')
@click.option('--train_clip_gradient', default=False, type=bool,
help='whether to apply gradient clipping with L2 norm threshold 1.0')
@click.option('--train_display_step', default=200, type=click.IntRange(min=1),
help='number of steps till outputting stats')
@click.option('--train_prediction_path', default='./validation_prediction_%s_%s/No_%d',
help='path where to save predictions on each epoch')
@click.option('--train_restore', default=False, type=bool, help='whether previous model checkpoint need restoring')
@click.option('--test_search_path', default='../dataset/test_data/*.nii.gz',
help='a search pattern to find all test data and label images')
@click.option('--test_data_suffix', default='_img.nii.gz', help='suffix pattern for the test data images')
@click.option('--test_label_suffix', default='_lab.nii.gz', help='suffix pattern for the test label images')
@click.option('--test_shuffle_data', default=False, type=bool,
help='whether the order of the loaded test files path should be randomized')
@click.option('--test_channels', default=1, type=click.IntRange(min=1), help='number of test data channels')
@click.option('--test_n_class', default=4, type=click.IntRange(min=1),
help='number of test label classes, including the background')
@click.option('--test_label_intensity', default=(0, 88, 200, 244), multiple=True,
type=click.IntRange(min=0),
help='tuple of intensities of the test ground truths')
@click.option('--test_prediction_path', default=u'./test_prediction_%s_%s/No_%d',
help='path where to save test predictions')
@click.option('--val_search_path', default='../dataset/val_data/*.nii.gz',
help='a search pattern to find all validation data and label images')
@click.option('--val_data_suffix', default='_img.nii.gz', help='suffix pattern for the val data images')
@click.option('--val_label_suffix', default='_lab.nii.gz', help='suffix pattern for the val label images')
@click.option('--val_shuffle_data', default=False, type=bool,
help='whether the order of the loaded val files path should be randomized')
@click.option('--val_channels', default=1, type=click.IntRange(min=1), help='number of val data channels')
@click.option('--val_n_class', default=4, type=click.IntRange(min=1),
help='number of val label classes, including the background')
@click.option('--val_label_intensity', default=(0, 88, 200, 244), multiple=True,
type=click.IntRange(min=0),
help='tuple of intensities of the test ground truths')
@click.option('--train_center_crop', default=True, type=bool,
help='whether to extract roi from center during training')
@click.option('--train_center_roi', default=(120, 120, 1), multiple=True, type=click.IntRange(min=0),
help='roi size you want to extract during training')
@click.option('--test_center_crop', default=True, type=bool,
help='whether to extract roi from center while testing')
@click.option('--test_center_roi', default=(120, 120, 1), multiple=True, type=click.IntRange(min=0),
help='roi size you want to extract while testing')
@click.option('--pos_parameter', default=5e-4, type=click.FloatRange(min=0),
help='position loss weight')
def run(run_times, time, train_search_path, train_data_suffix, train_label_suffix, train_shuffle_data, train_crop_patch, train_patch_size, train_channels, train_n_class, train_contain_foreground, train_label_intensity, train_original_search_path,
net_layers, net_features_root, net_cost_name, net_regularizer_type, net_regularization_coefficient, net_acnn_model_path,
trainer_batch_size, trainer_optimizer_name, trainer_learning_rate, train_validation_batch_size, train_model_path, train_training_iters, train_epochs, train_dropout_rate, train_clip_gradient, train_display_step, train_prediction_path, train_restore,
test_search_path, test_data_suffix, test_label_suffix, test_shuffle_data,
test_channels, test_n_class, test_label_intensity, test_n_files, test_prediction_path,
val_search_path, val_data_suffix, val_label_suffix, val_shuffle_data,
val_channels, val_n_class, val_label_intensity, saliency, train_center_crop, train_center_roi, test_center_crop, test_center_roi, pos_parameter
):
if train_restore:
assert time != t, "The time when the model to restore was trained is not the time now! "
train_acc_table = np.array([])
train_dice_table = np.array([])
train_auc_table = np.array([])
train_sens_table = np.array([])
train_spec_table = np.array([])
test_acc_table = np.array([])
test_dice_table = np.array([])
test_auc_table = np.array([])
for i in range(run_times):
train_data_provider = image_util.ImageDataProvider(search_path=train_search_path,
data_suffix=train_data_suffix,
label_suffix=train_label_suffix,
shuffle_data=train_shuffle_data,
crop_patch=train_crop_patch,
patch_size=train_patch_size,
channels=train_channels,
n_class=train_n_class,
contain_foreground=train_contain_foreground,
label_intensity=train_label_intensity,
center_crop=train_center_crop,
center_roi=train_center_roi,
inference_phase=False
)
train_original_data_provider = image_util.ImageDataProvider(search_path=train_original_search_path,
data_suffix=test_data_suffix,
label_suffix=test_label_suffix,
shuffle_data=False,
crop_patch=False,
patch_size=train_patch_size,
channels=train_channels,
n_class=train_n_class,
contain_foreground=train_contain_foreground,
label_intensity=train_label_intensity,
center_crop=train_center_crop,
center_roi=train_center_roi,
inference_phase=True
)
test_data_provider = image_util.ImageDataProvider(search_path=test_search_path,
data_suffix=test_data_suffix,
label_suffix=test_label_suffix,
shuffle_data=test_shuffle_data,
crop_patch=False,
channels=test_channels,
n_class=test_n_class,
label_intensity=test_label_intensity,
center_crop=test_center_crop,
center_roi=test_center_roi,
inference_phase=True)
val_data_provider = image_util.ImageDataProvider(search_path=val_search_path,
data_suffix=val_data_suffix,
label_suffix=val_label_suffix,
shuffle_data=val_shuffle_data,
crop_patch=False,
channels=val_channels,
n_class=val_n_class,
label_intensity=val_label_intensity,
center_crop=test_center_crop,
center_roi=test_center_roi,
inference_phase=True)
if net_regularizer_type == 'anatomical_constraint_acnn' or net_regularizer_type == 'anatomical_constraint_cae':
acnn = ACNN.AutoEncoder(batch_size=trainer_batch_size)
acnn_save_path = acnn.train(train_data_provider, net_acnn_model_path % saliency)
net = unet.UNet(layers=net_layers, features_root=net_features_root, channels=train_channels,
n_class=train_n_class, batch_size=trainer_batch_size, cost_name=net_cost_name,
pos_parameter=pos_parameter,
cost_kwargs={'regularizer_type': net_regularizer_type,
'regularization_coefficient': net_regularization_coefficient,
'acnn_model_path': (net_acnn_model_path % saliency)})
trainer = unet.Trainer(net, batch_size=trainer_batch_size, optimizer_name=trainer_optimizer_name,
opt_kwargs={'learning_rate': trainer_learning_rate})
path, train_acc, train_dice, train_auc, train_sens, train_spec = trainer.train(train_data_provider,
val_data_provider,
train_original_data_provider,
train_validation_batch_size,
model_path=train_model_path % (
saliency, time, i),
training_iters=train_training_iters,
epochs=train_epochs,
dropout=train_dropout_rate,
clip_gradient=train_clip_gradient,
display_step=train_display_step,
prediction_path=train_prediction_path % (
saliency, time, i),
restore=train_restore)
train_acc_table = np.hstack((train_acc_table, train_acc))
train_dice_table = np.hstack((train_dice_table, train_dice))
train_auc_table = np.hstack((train_auc_table, train_auc))
train_sens_table = np.hstack((train_sens_table, train_sens))
train_spec_table = np.hstack((train_spec_table, train_spec))
train_summary_path = './train_summary_%s_%s' % (saliency, time)
if not os.path.exists(train_summary_path):
logging.info('Allocating {:}'.format(train_summary_path))
os.makedirs(train_summary_path)
np.savez(os.path.join(train_summary_path, 'No_%d.npz' % i), acc=train_acc, dice=train_dice, auc=train_auc,
sens=train_sens, spec=train_spec)
test_data_provider.reset_index()
test_data, test_labels, test_affine, _ = test_data_provider(test_n_files)
predictions = net.predict(path, test_data)
test_acc = unet.acc_rate(predictions, test_labels)
test_dice = unet.dice_score(predictions, test_labels)
test_auc = unet.auc_score(predictions, test_labels)
test_acc_table = np.hstack((test_acc_table, test_acc))
test_dice_table = np.hstack((test_dice_table, test_dice))
test_auc_table = np.hstack((test_auc_table, test_auc))
dice_score_path = './dice_score_%s_%s' % (saliency, time)
if not os.path.exists(dice_score_path):
logging.info('Allocating {:}'.format(dice_score_path))
os.makedirs(dice_score_path)
np.save(os.path.join(dice_score_path, 'No_%d.npy' % i), test_dice)
print("Mean Dice score= {:.4f}".format(np.mean(test_dice)))
for j in range(len(test_data)):
test_data[j] = np.expand_dims(test_data[j], axis=0).transpose((0, 2, 3, 1, 4))
test_labels[j] = np.expand_dims(test_labels[j], axis=0).transpose((0, 2, 3, 1, 4))
predictions[j] = np.expand_dims(predictions[j], axis=0).transpose((0, 2, 3, 1, 4))
util.save_prediction(test_data, test_labels, predictions, test_prediction_path % (saliency, time, i))
util.save_prediction_1(predictions, test_affine, test_prediction_path % (saliency, time, i))
util.save_prediction_2(predictions, test_prediction_path % (saliency, time, i))
test_summary_path = './test_summary_%s_%s' % (saliency, time)
if not os.path.exists(test_summary_path):
logging.info('Allocating {:}'.format(test_summary_path))
os.makedirs(test_summary_path)
np.savez(os.path.join(test_summary_path, 'No_%d.npz' % i), acc=test_acc, dice=test_dice, auc=test_auc)
mean_train_acc = np.mean(np.reshape(train_acc_table, [run_times, -1]), axis=0)
mean_train_dice = np.mean(np.reshape(train_dice_table, [run_times, -1]), axis=0)
mean_train_auc = np.mean(np.reshape(train_auc_table, [run_times, -1]), axis=0)
mean_train_sens = np.mean(np.reshape(train_sens_table, [run_times, -1]), axis=0)
mean_train_spec = np.mean(np.reshape(train_spec_table, [run_times, -1]), axis=0)
mean_test_acc = np.mean(np.reshape(test_acc_table, [run_times, -1]), axis=0)
mean_test_dice = np.mean(np.reshape(train_dice_table, [run_times, -1]), axis=0)
mean_test_auc = np.mean(np.reshape(train_auc_table, [run_times, -1]), axis=0)
np.savez('./mean_train_summary_%s_%s.npz' % (saliency, time), acc=mean_train_acc, auc=mean_train_auc,
sens=mean_train_sens, spec=mean_train_spec, dice=mean_train_dice)
np.savez('./mean_test_summary_%s_%s.npz' % (saliency, time), acc=mean_test_acc, auc=mean_test_auc,
dice=mean_test_dice)
if __name__ == '__main__':
run()