Diff of /code/deepseg.py [000000] .. [32d261]

Switch to unified view

a b/code/deepseg.py
1
import os, time, math
2
import nibabel as nib, numpy as np
3
import tensorflow as tf
4
import glob
5
from image_utils import *
6
7
def deeplearningseg(model_path, test_dir, atlas_dir):           
8
     
9
   with tf.Session() as sess:
10
       
11
        sess.run(tf.global_variables_initializer())
12
13
        # Import the computation graph and restore the variable values
14
        saver = tf.train.import_meta_graph('{0}.meta'.format(model_path))
15
        saver.restore(sess, '{0}'.format(model_path))
16
        
17
        # Process each subject subdirectory
18
        table_time = []
19
20
21
        if os.path.exists('{0}/subjnames.txt'.format(test_dir)):
22
            os.system('rm {0}/*.txt'.format(test_dir))
23
        os.system('touch {0}/subjnames.txt'.format(test_dir))
24
        for data in sorted(os.listdir(test_dir)):
25
            
26
            print(data)
27
            
28
            data_dir = os.path.join(test_dir, data)
29
            
30
            if not os.path.isdir(data_dir):
31
                print('  {0} is not a valid directory, Skip'.format(data_dir))
32
                continue
33
            
34
            file = open('{0}/subjnames.txt'.format(test_dir),'a')
35
            file.write('{0}\n'.format(data))
36
            file.close()
37
            
38
            if os.path.exists('{0}/PHsegmentation_ED.gipl'.format(data_dir)):
39
                os.system('rm {0}/*.gipl'.format(data_dir))
40
            if os.path.exists('{0}/lvsa_.nii.gz'.format(data_dir)):
41
                os.system('rm {0}/lvsa_*.nii.gz'.format(data_dir))
42
                os.system('rm {0}/seg_*.nii.gz'.format(data_dir))
43
            
44
            originalnii = glob.glob('{0}/*.nii'.format(data_dir))     
45
            if not originalnii:
46
                print('  original nifit image does not exist, use lvsa.nii.gz')
47
                originalnii = glob.glob('{0}/*.nii.gz'.format(data_dir))  
48
                imagePreprocessing(originalnii[0], data_dir, atlas_dir) 
49
            else:
50
                print('  start image preprocessing ...')
51
                imagePreprocessing(originalnii[0], data_dir, atlas_dir)
52
            
53
            # Process ED and ES time frames
54
            image_ED_name = '{0}/lvsa_{1}.nii.gz'.format(data_dir, 'ED')
55
            image_ES_name = '{0}/lvsa_{1}.nii.gz'.format(data_dir, 'ES')
56
   
57
            if not os.path.exists(image_ED_name) or not os.path.exists(image_ES_name):
58
                print(' Image {0} or {1} does not exist. Skip.'.format(image_ED_name, image_ES_name))
59
                continue
60
                               
61
            if os.path.exists('{0}/{1}'.format(data_dir, 'dofs')) or \
62
               os.path.exists('{0}/{1}'.format(data_dir, 'segs')) or \
63
               os.path.exists('{0}/{1}'.format(data_dir, 'tmps')) or \
64
               os.path.exists('{0}/{1}'.format(data_dir, 'sizes')) or \
65
               os.path.exists('{0}/{1}'.format(data_dir, 'motion')) or \
66
               os.path.exists('{0}/{1}'.format(data_dir, 'vtks')):
67
                    
68
                os.system('rm -rf {0}/{1}'.format(data_dir, 'dofs'))
69
                os.system('rm -rf {0}/{1}'.format(data_dir, 'segs'))
70
                os.system('rm -rf {0}/{1}'.format(data_dir, 'tmps'))
71
                os.system('rm -rf {0}/{1}'.format(data_dir, 'sizes'))
72
                os.system('rm -rf {0}/{1}'.format(data_dir, 'motion'))
73
                os.system('rm -rf {0}/{1}'.format(data_dir, 'vtks'))
74
                
75
                os.mkdir('{0}/{1}'.format(data_dir, 'dofs'))
76
                os.mkdir('{0}/{1}'.format(data_dir, 'segs'))
77
                os.mkdir('{0}/{1}'.format(data_dir, 'tmps'))
78
                os.mkdir('{0}/{1}'.format(data_dir, 'sizes'))
79
                os.mkdir('{0}/{1}'.format(data_dir, 'motion'))
80
                os.mkdir('{0}/{1}'.format(data_dir, 'vtks'))
81
                
82
            else: 
83
                
84
                os.mkdir('{0}/{1}'.format(data_dir, 'dofs'))
85
                os.mkdir('{0}/{1}'.format(data_dir, 'segs'))
86
                os.mkdir('{0}/{1}'.format(data_dir, 'tmps'))
87
                os.mkdir('{0}/{1}'.format(data_dir, 'sizes'))
88
                os.mkdir('{0}/{1}'.format(data_dir, 'motion'))
89
                os.mkdir('{0}/{1}'.format(data_dir, 'vtks'))
90
91
            for fr in ['ED', 'ES']:
92
       
93
                image_name = '{0}/lvsa_{1}.nii.gz'.format(data_dir, fr)
94
95
                # Read the image
96
                print('  Reading {} ...'.format(image_name))
97
                nim = nib.load(image_name)
98
                image = nim.get_data()
99
100
                imageOrg = np.squeeze(image, axis=-1).astype(np.int16)
101
                tmp = imageOrg
102
103
                X, Y, Z = image.shape[:3]
104
                
105
                print('  Segmenting {0} frame ...'.format(fr))
106
              
107
                # print('  Segmenting {0} frame {1} ...'.format(fr, slice))
108
                start_seg_time = time.time()
109
                
110
                for slice in range(Z):
111
                    
112
                    image = imageOrg[:,:,slice]
113
                    
114
                    if image.ndim == 2:
115
                        image = np.expand_dims(image, axis=2)
116
                        
117
                        # Intensity rescaling
118
                        image = rescale_intensity(image, (1, 99))
119
                        # Pad the image size to be a factor of 16 so that the downsample and upsample procedures
120
                        # in the network will result in the same image size at each resolution level.
121
                        X2, Y2 = int(math.ceil(X / 16.0)) * 16, int(math.ceil(Y / 16.0)) * 16
122
                        x_pre, y_pre = int((X2 - X) / 2), int((Y2 - Y) / 2)
123
                        x_post, y_post = (X2 - X) - x_pre, (Y2 - Y) - y_pre
124
                        image = np.pad(image, ((x_pre, x_post), (y_pre, y_post), (0, 0)), 'constant')
125
                        
126
                        # Transpose the shape to NXYC
127
                        image = np.transpose(image, axes=(2, 0, 1)).astype(np.float32)
128
                        image = np.expand_dims(image, axis=-1)
129
                        
130
                        # Evaluate the networ
131
                        prob, pred = sess.run(['probE:0', 'predR:0'], feed_dict={'image:0': image, 'training:0': False})
132
                        
133
                        # Transpose and crop the segmentation to recover the original size
134
                        pred = np.transpose(pred, axes=(1, 2, 0))
135
                        
136
                        pred = pred[x_pre:x_pre + X, y_pre:y_pre + Y]
137
                        pred = np.squeeze(pred, axis=-1).astype(np.int16)
138
                        tmp[:,:,slice] = pred
139
                    
140
                seg_time = time.time() - start_seg_time
141
                print('  Segmentation time = {:3f}s'.format(seg_time))
142
                table_time += [seg_time]
143
144
                pred = tmp
145
        
146
                nim2 = nib.Nifti1Image(pred, nim.affine)
147
                nim2.header['pixdim'] = nim.header['pixdim']
148
                nib.save(nim2, '{0}/segs/seg_lvsa_{1}.nii.gz'.format(data_dir, fr))
149
150
        print('Average segmentation time = {:.3f}s per frame'.format(np.mean(table_time)))