import os, time, math
import nibabel as nib, numpy as np
import tensorflow as tf
import glob
from image_utils import *
def deeplearningseg(model_path, test_dir, atlas_dir):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Import the computation graph and restore the variable values
saver = tf.train.import_meta_graph('{0}.meta'.format(model_path))
saver.restore(sess, '{0}'.format(model_path))
# Process each subject subdirectory
table_time = []
if os.path.exists('{0}/subjnames.txt'.format(test_dir)):
os.system('rm {0}/*.txt'.format(test_dir))
os.system('touch {0}/subjnames.txt'.format(test_dir))
for data in sorted(os.listdir(test_dir)):
print(data)
data_dir = os.path.join(test_dir, data)
if not os.path.isdir(data_dir):
print(' {0} is not a valid directory, Skip'.format(data_dir))
continue
file = open('{0}/subjnames.txt'.format(test_dir),'a')
file.write('{0}\n'.format(data))
file.close()
if os.path.exists('{0}/PHsegmentation_ED.gipl'.format(data_dir)):
os.system('rm {0}/*.gipl'.format(data_dir))
if os.path.exists('{0}/lvsa_.nii.gz'.format(data_dir)):
os.system('rm {0}/lvsa_*.nii.gz'.format(data_dir))
os.system('rm {0}/seg_*.nii.gz'.format(data_dir))
originalnii = glob.glob('{0}/*.nii'.format(data_dir))
if not originalnii:
print(' original nifit image does not exist, use lvsa.nii.gz')
originalnii = glob.glob('{0}/*.nii.gz'.format(data_dir))
imagePreprocessing(originalnii[0], data_dir, atlas_dir)
else:
print(' start image preprocessing ...')
imagePreprocessing(originalnii[0], data_dir, atlas_dir)
# Process ED and ES time frames
image_ED_name = '{0}/lvsa_{1}.nii.gz'.format(data_dir, 'ED')
image_ES_name = '{0}/lvsa_{1}.nii.gz'.format(data_dir, 'ES')
if not os.path.exists(image_ED_name) or not os.path.exists(image_ES_name):
print(' Image {0} or {1} does not exist. Skip.'.format(image_ED_name, image_ES_name))
continue
if os.path.exists('{0}/{1}'.format(data_dir, 'dofs')) or \
os.path.exists('{0}/{1}'.format(data_dir, 'segs')) or \
os.path.exists('{0}/{1}'.format(data_dir, 'tmps')) or \
os.path.exists('{0}/{1}'.format(data_dir, 'sizes')) or \
os.path.exists('{0}/{1}'.format(data_dir, 'motion')) or \
os.path.exists('{0}/{1}'.format(data_dir, 'vtks')):
os.system('rm -rf {0}/{1}'.format(data_dir, 'dofs'))
os.system('rm -rf {0}/{1}'.format(data_dir, 'segs'))
os.system('rm -rf {0}/{1}'.format(data_dir, 'tmps'))
os.system('rm -rf {0}/{1}'.format(data_dir, 'sizes'))
os.system('rm -rf {0}/{1}'.format(data_dir, 'motion'))
os.system('rm -rf {0}/{1}'.format(data_dir, 'vtks'))
os.mkdir('{0}/{1}'.format(data_dir, 'dofs'))
os.mkdir('{0}/{1}'.format(data_dir, 'segs'))
os.mkdir('{0}/{1}'.format(data_dir, 'tmps'))
os.mkdir('{0}/{1}'.format(data_dir, 'sizes'))
os.mkdir('{0}/{1}'.format(data_dir, 'motion'))
os.mkdir('{0}/{1}'.format(data_dir, 'vtks'))
else:
os.mkdir('{0}/{1}'.format(data_dir, 'dofs'))
os.mkdir('{0}/{1}'.format(data_dir, 'segs'))
os.mkdir('{0}/{1}'.format(data_dir, 'tmps'))
os.mkdir('{0}/{1}'.format(data_dir, 'sizes'))
os.mkdir('{0}/{1}'.format(data_dir, 'motion'))
os.mkdir('{0}/{1}'.format(data_dir, 'vtks'))
for fr in ['ED', 'ES']:
image_name = '{0}/lvsa_{1}.nii.gz'.format(data_dir, fr)
# Read the image
print(' Reading {} ...'.format(image_name))
nim = nib.load(image_name)
image = nim.get_data()
imageOrg = np.squeeze(image, axis=-1).astype(np.int16)
tmp = imageOrg
X, Y, Z = image.shape[:3]
print(' Segmenting {0} frame ...'.format(fr))
# print(' Segmenting {0} frame {1} ...'.format(fr, slice))
start_seg_time = time.time()
for slice in range(Z):
image = imageOrg[:,:,slice]
if image.ndim == 2:
image = np.expand_dims(image, axis=2)
# Intensity rescaling
image = rescale_intensity(image, (1, 99))
# Pad the image size to be a factor of 16 so that the downsample and upsample procedures
# in the network will result in the same image size at each resolution level.
X2, Y2 = int(math.ceil(X / 16.0)) * 16, int(math.ceil(Y / 16.0)) * 16
x_pre, y_pre = int((X2 - X) / 2), int((Y2 - Y) / 2)
x_post, y_post = (X2 - X) - x_pre, (Y2 - Y) - y_pre
image = np.pad(image, ((x_pre, x_post), (y_pre, y_post), (0, 0)), 'constant')
# Transpose the shape to NXYC
image = np.transpose(image, axes=(2, 0, 1)).astype(np.float32)
image = np.expand_dims(image, axis=-1)
# Evaluate the networ
prob, pred = sess.run(['probE:0', 'predR:0'], feed_dict={'image:0': image, 'training:0': False})
# Transpose and crop the segmentation to recover the original size
pred = np.transpose(pred, axes=(1, 2, 0))
pred = pred[x_pre:x_pre + X, y_pre:y_pre + Y]
pred = np.squeeze(pred, axis=-1).astype(np.int16)
tmp[:,:,slice] = pred
seg_time = time.time() - start_seg_time
print(' Segmentation time = {:3f}s'.format(seg_time))
table_time += [seg_time]
pred = tmp
nim2 = nib.Nifti1Image(pred, nim.affine)
nim2.header['pixdim'] = nim.header['pixdim']
nib.save(nim2, '{0}/segs/seg_lvsa_{1}.nii.gz'.format(data_dir, fr))
print('Average segmentation time = {:.3f}s per frame'.format(np.mean(table_time)))