--- a +++ b/nbs/Appendix_pre_trained_models.ipynb @@ -0,0 +1,112 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "caa16d01", + "metadata": {}, + "source": [ + "# Using pre-trained models on text data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "d9f0014c", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "import pandas as pd\n" + ] + }, + { + "cell_type": "markdown", + "id": "ec0f3fba", + "metadata": {}, + "source": [ + "Repositories like Hugging Face provide a huge number of pre-trained models that can tranform text data into highly representative features.\n", + "\n", + "In this example we use ClinicalBERT, a language model initialized from the more general language model BERT and then further trained on a large multicenter dataset with a large corpus of 1.2B words of diverse diseases. This approach was inspired by [this blogpost](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/BERT/Fine_tuning_BERT_(and_friends)_for_multi_label_text_classification.ipynb#scrollTo=4wxY3x-ZZz8h)." + ] + }, + { + "cell_type": "markdown", + "id": "01dbc978", + "metadata": {}, + "source": [ + "First install the libraries for HuggingFace: Transformers and Datasets" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6a160ce7", + "metadata": {}, + "outputs": [], + "source": [ + "!pip install -q transformers datasets" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6297d597", + "metadata": {}, + "outputs": [], + "source": [ + "from transformers import AutoTokenizer, AutoModel\n", + "tokenizer = AutoTokenizer.from_pretrained(\"medicalai/ClinicalBERT\")\n", + "model = AutoModel.from_pretrained(\"medicalai/ClinicalBERT\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "1835f4f3", + "metadata": {}, + "source": [ + "Load in prior dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "0a790b4c", + "metadata": {}, + "outputs": [], + "source": [ + "# load data as a pandas dataframe\n", + "df = pd.read_csv('../data/overview-of-recordings.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f6245713", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}