113 lines (112 with data), 2.7 kB
{
"cells": [
{
"cell_type": "markdown",
"id": "caa16d01",
"metadata": {},
"source": [
"# Using pre-trained models on text data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d9f0014c",
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
"import pandas as pd\n"
]
},
{
"cell_type": "markdown",
"id": "ec0f3fba",
"metadata": {},
"source": [
"Repositories like Hugging Face provide a huge number of pre-trained models that can tranform text data into highly representative features.\n",
"\n",
"In this example we use ClinicalBERT, a language model initialized from the more general language model BERT and then further trained on a large multicenter dataset with a large corpus of 1.2B words of diverse diseases. This approach was inspired by [this blogpost](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/BERT/Fine_tuning_BERT_(and_friends)_for_multi_label_text_classification.ipynb#scrollTo=4wxY3x-ZZz8h)."
]
},
{
"cell_type": "markdown",
"id": "01dbc978",
"metadata": {},
"source": [
"First install the libraries for HuggingFace: Transformers and Datasets"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6a160ce7",
"metadata": {},
"outputs": [],
"source": [
"!pip install -q transformers datasets"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6297d597",
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer, AutoModel\n",
"tokenizer = AutoTokenizer.from_pretrained(\"medicalai/ClinicalBERT\")\n",
"model = AutoModel.from_pretrained(\"medicalai/ClinicalBERT\")\n"
]
},
{
"cell_type": "markdown",
"id": "1835f4f3",
"metadata": {},
"source": [
"Load in prior dataset"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "0a790b4c",
"metadata": {},
"outputs": [],
"source": [
"# load data as a pandas dataframe\n",
"df = pd.read_csv('../data/overview-of-recordings.csv')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f6245713",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}