Switch to unified view

a b/src/model/modeling_dummy.py
1
from dataclasses import dataclass
2
from typing import Tuple
3
4
import torch
5
from transformers import AutoModel, AutoConfig
6
from transformers import PreTrainedModel, PretrainedConfig
7
from transformers.utils import ModelOutput
8
9
10
@dataclass
11
class DummyModelOutput(ModelOutput):
12
    hidden_states: Tuple[torch.Tensor]
13
14
15
class DummyModelConfig(PretrainedConfig):
16
    model_type = "dummy_model"
17
18
    def __init__(self, hidden_size: int = 768, **kwargs) -> None:
19
        self.hidden_size = hidden_size
20
        super().__init__(**kwargs)
21
        return
22
23
24
class DummyModel(PreTrainedModel):
25
    config_class = DummyModelConfig
26
27
    def __init__(self, config: DummyModelConfig) -> None:
28
        super().__init__(config)
29
        self.param = torch.nn.Parameter(torch.zeros(1), requires_grad=False)
30
        return
31
32
    def forward(self, x: torch.Tensor, **kwargs) -> DummyModelOutput:
33
        assert x.shape[-1] == self.config.hidden_size
34
        dtype = self.param.dtype
35
        x = x.to(dtype)
36
        return DummyModelOutput(hidden_states=(x,))
37
38
39
AutoConfig.register("dummy_model", DummyModelConfig)
40
AutoModel.register(DummyModelConfig, DummyModel)
41
42
if __name__ == "__main__":
43
    config = DummyModelConfig(hidden_size=3)
44
    print(config)
45
    model = AutoModel.from_config(config)
46
    print(model)
47
    x = torch.randn(1, 2, 3)
48
    output = model(x)
49
    print(output)