from dataclasses import dataclass
from typing import Tuple
import torch
from transformers import AutoModel, AutoConfig
from transformers import PreTrainedModel, PretrainedConfig
from transformers.utils import ModelOutput
@dataclass
class DummyModelOutput(ModelOutput):
hidden_states: Tuple[torch.Tensor]
class DummyModelConfig(PretrainedConfig):
model_type = "dummy_model"
def __init__(self, hidden_size: int = 768, **kwargs) -> None:
self.hidden_size = hidden_size
super().__init__(**kwargs)
return
class DummyModel(PreTrainedModel):
config_class = DummyModelConfig
def __init__(self, config: DummyModelConfig) -> None:
super().__init__(config)
self.param = torch.nn.Parameter(torch.zeros(1), requires_grad=False)
return
def forward(self, x: torch.Tensor, **kwargs) -> DummyModelOutput:
assert x.shape[-1] == self.config.hidden_size
dtype = self.param.dtype
x = x.to(dtype)
return DummyModelOutput(hidden_states=(x,))
AutoConfig.register("dummy_model", DummyModelConfig)
AutoModel.register(DummyModelConfig, DummyModel)
if __name__ == "__main__":
config = DummyModelConfig(hidden_size=3)
print(config)
model = AutoModel.from_config(config)
print(model)
x = torch.randn(1, 2, 3)
output = model(x)
print(output)