|
a |
|
b/notebooks/stats.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 27, |
|
|
6 |
"metadata": { |
|
|
7 |
"scrolled": false |
|
|
8 |
}, |
|
|
9 |
"outputs": [ |
|
|
10 |
{ |
|
|
11 |
"data": { |
|
|
12 |
"text/plain": [ |
|
|
13 |
" dataset cutoff algorithm rank_auc \n", |
|
|
14 |
" geis_250.00 :30 1 visit :210 LR :210 Min. : 1.0 \n", |
|
|
15 |
" geis_250.00_cutoff182:30 1 year :210 RF :210 1st Qu.: 8.0 \n", |
|
|
16 |
" geis_250.00_cutoff365:30 6 months:210 XGB:210 Median :15.5 \n", |
|
|
17 |
" geis_250.40 :30 Mean :15.5 \n", |
|
|
18 |
" geis_250.40_cutoff182:30 3rd Qu.:23.0 \n", |
|
|
19 |
" geis_250.40_cutoff365:30 Max. :30.0 \n", |
|
|
20 |
" geis_327.23 :30 \n", |
|
|
21 |
" geis_327.23_cutoff182:30 \n", |
|
|
22 |
" geis_327.23_cutoff365:30 \n", |
|
|
23 |
" geis_331.0 :30 \n", |
|
|
24 |
" geis_331.0_cutoff182 :30 \n", |
|
|
25 |
" geis_331.0_cutoff365 :30 \n", |
|
|
26 |
" geis_530.81 :30 \n", |
|
|
27 |
" geis_530.81_cutoff182:30 \n", |
|
|
28 |
" geis_530.81_cutoff365:30 \n", |
|
|
29 |
" geis_571.8 :30 \n", |
|
|
30 |
" geis_571.8_cutoff182 :30 \n", |
|
|
31 |
" geis_571.8_cutoff365 :30 \n", |
|
|
32 |
" geis_585.9 :30 \n", |
|
|
33 |
" geis_585.9_cutoff182 :30 \n", |
|
|
34 |
" geis_585.9_cutoff365 :30 " |
|
|
35 |
] |
|
|
36 |
}, |
|
|
37 |
"metadata": {}, |
|
|
38 |
"output_type": "display_data" |
|
|
39 |
} |
|
|
40 |
], |
|
|
41 |
"source": [ |
|
|
42 |
"setwd('/media/bill/Drive/projects/geis-ehr/analysis')\n", |
|
|
43 |
"\n", |
|
|
44 |
"df <- read.csv(\"auc_rankings.csv\",header=TRUE,sep=',')\n", |
|
|
45 |
"# df <- subset(df,!is.na(rank))\n", |
|
|
46 |
"# df <- subset(df,dataset!='505_tecator')\n", |
|
|
47 |
"# df <- subset(df,algorithm != 'LR')\n", |
|
|
48 |
"summary(df,maxsum=21)\n" |
|
|
49 |
] |
|
|
50 |
}, |
|
|
51 |
{ |
|
|
52 |
"cell_type": "code", |
|
|
53 |
"execution_count": 29, |
|
|
54 |
"metadata": {}, |
|
|
55 |
"outputs": [ |
|
|
56 |
{ |
|
|
57 |
"data": { |
|
|
58 |
"text/plain": [ |
|
|
59 |
"\n", |
|
|
60 |
"\tPairwise comparisons using Wilcoxon signed rank test \n", |
|
|
61 |
"\n", |
|
|
62 |
"data: dfs$rank_auc and dfs$algorithm \n", |
|
|
63 |
"\n", |
|
|
64 |
" LR RF \n", |
|
|
65 |
"RF 1.0e-12 - \n", |
|
|
66 |
"XGB 1.1e-12 7.8e-12\n", |
|
|
67 |
"\n", |
|
|
68 |
"P value adjustment method: bonferroni " |
|
|
69 |
] |
|
|
70 |
}, |
|
|
71 |
"metadata": {}, |
|
|
72 |
"output_type": "display_data" |
|
|
73 |
} |
|
|
74 |
], |
|
|
75 |
"source": [ |
|
|
76 |
"dfs <- subset(df,cutoff=='1 visit')\n", |
|
|
77 |
"pairwise.wilcox.test(dfs$rank_auc, dfs$algorithm, p.adjust.method = 'bonferroni',\n", |
|
|
78 |
" paired = T)" |
|
|
79 |
] |
|
|
80 |
}, |
|
|
81 |
{ |
|
|
82 |
"cell_type": "code", |
|
|
83 |
"execution_count": 31, |
|
|
84 |
"metadata": {}, |
|
|
85 |
"outputs": [ |
|
|
86 |
{ |
|
|
87 |
"data": { |
|
|
88 |
"text/plain": [ |
|
|
89 |
"\n", |
|
|
90 |
"\tPairwise comparisons using Wilcoxon signed rank test \n", |
|
|
91 |
"\n", |
|
|
92 |
"data: dfs$rank_auc and dfs$algorithm \n", |
|
|
93 |
"\n", |
|
|
94 |
" LR RF \n", |
|
|
95 |
"RF 1.0e-12 - \n", |
|
|
96 |
"XGB 1.0e-12 2.3e-12\n", |
|
|
97 |
"\n", |
|
|
98 |
"P value adjustment method: bonferroni " |
|
|
99 |
] |
|
|
100 |
}, |
|
|
101 |
"metadata": {}, |
|
|
102 |
"output_type": "display_data" |
|
|
103 |
} |
|
|
104 |
], |
|
|
105 |
"source": [ |
|
|
106 |
"dfs <- subset(df,cutoff=='6 months')\n", |
|
|
107 |
"pairwise.wilcox.test(dfs$rank_auc, dfs$algorithm, p.adjust.method = 'bonferroni',\n", |
|
|
108 |
" paired = T)" |
|
|
109 |
] |
|
|
110 |
}, |
|
|
111 |
{ |
|
|
112 |
"cell_type": "code", |
|
|
113 |
"execution_count": 28, |
|
|
114 |
"metadata": {}, |
|
|
115 |
"outputs": [ |
|
|
116 |
{ |
|
|
117 |
"data": { |
|
|
118 |
"text/plain": [ |
|
|
119 |
"\n", |
|
|
120 |
"\tPairwise comparisons using Wilcoxon signed rank test \n", |
|
|
121 |
"\n", |
|
|
122 |
"data: dfs$rank_auc and dfs$algorithm \n", |
|
|
123 |
"\n", |
|
|
124 |
" LR RF \n", |
|
|
125 |
"RF 1.0e-12 - \n", |
|
|
126 |
"XGB 1.0e-12 9.5e-12\n", |
|
|
127 |
"\n", |
|
|
128 |
"P value adjustment method: bonferroni " |
|
|
129 |
] |
|
|
130 |
}, |
|
|
131 |
"metadata": {}, |
|
|
132 |
"output_type": "display_data" |
|
|
133 |
} |
|
|
134 |
], |
|
|
135 |
"source": [ |
|
|
136 |
"dfs <- subset(df,cutoff=='1 year')\n", |
|
|
137 |
"pairwise.wilcox.test(dfs$rank_auc, dfs$algorithm, p.adjust.method = 'bonferroni',\n", |
|
|
138 |
" paired = T)" |
|
|
139 |
] |
|
|
140 |
} |
|
|
141 |
], |
|
|
142 |
"metadata": { |
|
|
143 |
"kernelspec": { |
|
|
144 |
"display_name": "R", |
|
|
145 |
"language": "R", |
|
|
146 |
"name": "ir" |
|
|
147 |
}, |
|
|
148 |
"language_info": { |
|
|
149 |
"codemirror_mode": "r", |
|
|
150 |
"file_extension": ".r", |
|
|
151 |
"mimetype": "text/x-r-source", |
|
|
152 |
"name": "R", |
|
|
153 |
"pygments_lexer": "r", |
|
|
154 |
"version": "3.5.1" |
|
|
155 |
} |
|
|
156 |
}, |
|
|
157 |
"nbformat": 4, |
|
|
158 |
"nbformat_minor": 2 |
|
|
159 |
} |