160 lines (159 with data), 4.9 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
" dataset cutoff algorithm rank_auc \n",
" geis_250.00 :30 1 visit :210 LR :210 Min. : 1.0 \n",
" geis_250.00_cutoff182:30 1 year :210 RF :210 1st Qu.: 8.0 \n",
" geis_250.00_cutoff365:30 6 months:210 XGB:210 Median :15.5 \n",
" geis_250.40 :30 Mean :15.5 \n",
" geis_250.40_cutoff182:30 3rd Qu.:23.0 \n",
" geis_250.40_cutoff365:30 Max. :30.0 \n",
" geis_327.23 :30 \n",
" geis_327.23_cutoff182:30 \n",
" geis_327.23_cutoff365:30 \n",
" geis_331.0 :30 \n",
" geis_331.0_cutoff182 :30 \n",
" geis_331.0_cutoff365 :30 \n",
" geis_530.81 :30 \n",
" geis_530.81_cutoff182:30 \n",
" geis_530.81_cutoff365:30 \n",
" geis_571.8 :30 \n",
" geis_571.8_cutoff182 :30 \n",
" geis_571.8_cutoff365 :30 \n",
" geis_585.9 :30 \n",
" geis_585.9_cutoff182 :30 \n",
" geis_585.9_cutoff365 :30 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"setwd('/media/bill/Drive/projects/geis-ehr/analysis')\n",
"\n",
"df <- read.csv(\"auc_rankings.csv\",header=TRUE,sep=',')\n",
"# df <- subset(df,!is.na(rank))\n",
"# df <- subset(df,dataset!='505_tecator')\n",
"# df <- subset(df,algorithm != 'LR')\n",
"summary(df,maxsum=21)\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"\tPairwise comparisons using Wilcoxon signed rank test \n",
"\n",
"data: dfs$rank_auc and dfs$algorithm \n",
"\n",
" LR RF \n",
"RF 1.0e-12 - \n",
"XGB 1.1e-12 7.8e-12\n",
"\n",
"P value adjustment method: bonferroni "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"dfs <- subset(df,cutoff=='1 visit')\n",
"pairwise.wilcox.test(dfs$rank_auc, dfs$algorithm, p.adjust.method = 'bonferroni',\n",
" paired = T)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"\tPairwise comparisons using Wilcoxon signed rank test \n",
"\n",
"data: dfs$rank_auc and dfs$algorithm \n",
"\n",
" LR RF \n",
"RF 1.0e-12 - \n",
"XGB 1.0e-12 2.3e-12\n",
"\n",
"P value adjustment method: bonferroni "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"dfs <- subset(df,cutoff=='6 months')\n",
"pairwise.wilcox.test(dfs$rank_auc, dfs$algorithm, p.adjust.method = 'bonferroni',\n",
" paired = T)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"\tPairwise comparisons using Wilcoxon signed rank test \n",
"\n",
"data: dfs$rank_auc and dfs$algorithm \n",
"\n",
" LR RF \n",
"RF 1.0e-12 - \n",
"XGB 1.0e-12 9.5e-12\n",
"\n",
"P value adjustment method: bonferroni "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"dfs <- subset(df,cutoff=='1 year')\n",
"pairwise.wilcox.test(dfs$rank_auc, dfs$algorithm, p.adjust.method = 'bonferroni',\n",
" paired = T)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "3.5.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}