|
a |
|
b/code/ModelTraining.py |
|
|
1 |
#!/usr/bin/env python |
|
|
2 |
# coding: utf-8 |
|
|
3 |
|
|
|
4 |
# In[1]: |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
import pandas as pd |
|
|
8 |
import numpy as np |
|
|
9 |
from sklearn.model_selection import train_test_split |
|
|
10 |
from sklearn.preprocessing import LabelEncoder |
|
|
11 |
import warnings |
|
|
12 |
warnings.filterwarnings('ignore') |
|
|
13 |
|
|
|
14 |
X_bow_train = pd.read_csv('X_bow_train.csv') |
|
|
15 |
X_bow_test = pd.read_csv('X_bow_test.csv') |
|
|
16 |
y_bow_train = pd.read_csv('y_bow_train.csv') |
|
|
17 |
y_bow_test = pd.read_csv('y_bow_test.csv') |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
X_tf_train = pd.read_csv('X_tf_train.csv') |
|
|
21 |
X_tf_test = pd.read_csv('X_tf_test.csv') |
|
|
22 |
y_tf_train = pd.read_csv('y_tf_train.csv') |
|
|
23 |
y_tf_test = pd.read_csv('y_tf_test.csv') |
|
|
24 |
|
|
|
25 |
X_hash_train = pd.read_csv('X_hash_train.csv') |
|
|
26 |
X_hash_test = pd.read_csv('X_hash_test.csv') |
|
|
27 |
y_hash_train = pd.read_csv('y_hash_train.csv') |
|
|
28 |
y_hash_test = pd.read_csv('y_hash_test.csv') |
|
|
29 |
|
|
|
30 |
X_w2v_train = pd.read_csv('X_w2v_train.csv') |
|
|
31 |
X_w2v_test = pd.read_csv('X_w2v_test.csv') |
|
|
32 |
y_w2v_train = pd.read_csv('y_w2v_train.csv') |
|
|
33 |
y_w2v_test = pd.read_csv('y_w2v_test.csv') |
|
|
34 |
|
|
|
35 |
|
|
|
36 |
# In[2]: |
|
|
37 |
|
|
|
38 |
|
|
|
39 |
import pickle |
|
|
40 |
from sklearn.ensemble import RandomForestClassifier |
|
|
41 |
# train model with all features |
|
|
42 |
rf_bow = RandomForestClassifier(n_estimators=100, |
|
|
43 |
max_features=None, |
|
|
44 |
oob_score=True, |
|
|
45 |
n_jobs=-1, |
|
|
46 |
random_state=0) |
|
|
47 |
rf_tf = RandomForestClassifier(n_estimators=100, |
|
|
48 |
max_features=None, |
|
|
49 |
oob_score=True, |
|
|
50 |
n_jobs=-1, |
|
|
51 |
random_state=0) |
|
|
52 |
rf_hash = RandomForestClassifier(n_estimators=100, |
|
|
53 |
max_features=None, |
|
|
54 |
oob_score=True, |
|
|
55 |
n_jobs=-1, |
|
|
56 |
random_state=0) |
|
|
57 |
rf_w2v = RandomForestClassifier(n_estimators=100, |
|
|
58 |
max_features=None, |
|
|
59 |
oob_score=True, |
|
|
60 |
n_jobs=-1, |
|
|
61 |
random_state=0) |
|
|
62 |
|
|
|
63 |
rf_bow.fit(X_bow_train, y_bow_train) |
|
|
64 |
rf_tf.fit(X_tf_train, y_tf_train) |
|
|
65 |
rf_hash.fit(X_hash_train, y_hash_train) |
|
|
66 |
rf_w2v.fit(X_w2v_train, y_w2v_train) |
|
|
67 |
|
|
|
68 |
|
|
|
69 |
# In[3]: |
|
|
70 |
|
|
|
71 |
|
|
|
72 |
pickle.dump(rf_bow, open('rf_bow.pkl','wb')) |
|
|
73 |
pickle.dump(rf_tf, open('rf_tf.pkl','wb')) |
|
|
74 |
pickle.dump(rf_hash, open('rf_hash.pkl','wb')) |
|
|
75 |
pickle.dump(rf_w2v, open('rf_w2v.pkl','wb')) |
|
|
76 |
|
|
|
77 |
|
|
|
78 |
# In[4]: |
|
|
79 |
|
|
|
80 |
|
|
|
81 |
#train model for logistic Regression which is not inherently multiclass classifers. |
|
|
82 |
#In this case, we use defualt auto setting that if input is binary using OVR otherwise using multnomial |
|
|
83 |
from sklearn.linear_model import LogisticRegression |
|
|
84 |
|
|
|
85 |
lr_bow = LogisticRegression() |
|
|
86 |
lr_tf = LogisticRegression() |
|
|
87 |
lr_hash = LogisticRegression() |
|
|
88 |
lr_w2v = LogisticRegression() |
|
|
89 |
|
|
|
90 |
lr_bow.fit(X_bow_train, y_bow_train) |
|
|
91 |
lr_tf.fit(X_tf_train, y_tf_train) |
|
|
92 |
lr_hash.fit(X_hash_train, y_hash_train) |
|
|
93 |
lr_w2v.fit(X_w2v_train, y_w2v_train) |
|
|
94 |
|
|
|
95 |
|
|
|
96 |
# In[5]: |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
pickle.dump(lr_bow, open('lr_bow.pkl','wb')) |
|
|
100 |
pickle.dump(lr_tf, open('lr_tf.pkl','wb')) |
|
|
101 |
pickle.dump(lr_hash, open('lr_hash.pkl','wb')) |
|
|
102 |
pickle.dump(lr_w2v, open('lr_w2v.pkl','wb')) |
|
|
103 |
|
|
|
104 |
|
|
|
105 |
# In[6]: |
|
|
106 |
|
|
|
107 |
|
|
|
108 |
#train model for linear svm, which is not inherently multiclass classifers. |
|
|
109 |
#In this case, we use One VS Rest to save computing |
|
|
110 |
from sklearn.svm import SVC |
|
|
111 |
|
|
|
112 |
svc_bow = SVC(decision_function_shape='ovr') |
|
|
113 |
svc_tf = SVC(decision_function_shape='ovr') |
|
|
114 |
svc_hash = SVC(decision_function_shape='ovr') |
|
|
115 |
svc_w2v = SVC(decision_function_shape='ovr') |
|
|
116 |
|
|
|
117 |
svc_bow.fit(X_bow_train, y_bow_train) |
|
|
118 |
svc_tf.fit(X_tf_train, y_tf_train) |
|
|
119 |
svc_hash.fit(X_hash_train, y_hash_train) |
|
|
120 |
svc_w2v.fit(X_w2v_train, y_w2v_train) |
|
|
121 |
|
|
|
122 |
|
|
|
123 |
# In[7]: |
|
|
124 |
|
|
|
125 |
|
|
|
126 |
pickle.dump(svc_bow, open('svc_bow.pkl','wb')) |
|
|
127 |
pickle.dump(svc_tf, open('svc_tf.pkl','wb')) |
|
|
128 |
pickle.dump(svc_hash, open('svc_hash.pkl','wb')) |
|
|
129 |
pickle.dump(svc_w2v, open('svc_w2v.pkl','wb')) |
|
|
130 |
|
|
|
131 |
|
|
|
132 |
# In[8]: |
|
|
133 |
|
|
|
134 |
|
|
|
135 |
#train model for KNN |
|
|
136 |
from sklearn.neighbors import KNeighborsClassifier |
|
|
137 |
|
|
|
138 |
knn_bow = KNeighborsClassifier(n_neighbors=3) |
|
|
139 |
knn_tf = KNeighborsClassifier(n_neighbors=3) |
|
|
140 |
knn_hash = KNeighborsClassifier(n_neighbors=3) |
|
|
141 |
knn_w2v = KNeighborsClassifier(n_neighbors=3) |
|
|
142 |
|
|
|
143 |
knn_bow.fit(X_bow_train, y_bow_train) |
|
|
144 |
knn_tf.fit(X_tf_train, y_tf_train) |
|
|
145 |
knn_hash.fit(X_hash_train, y_hash_train) |
|
|
146 |
knn_w2v.fit(X_w2v_train, y_w2v_train) |
|
|
147 |
|
|
|
148 |
|
|
|
149 |
# In[9]: |
|
|
150 |
|
|
|
151 |
|
|
|
152 |
pickle.dump(knn_bow, open('knn_bow.pkl','wb')) |
|
|
153 |
pickle.dump(knn_tf, open('knn_tf.pkl','wb')) |
|
|
154 |
pickle.dump(knn_hash, open('knn_hash.pkl','wb')) |
|
|
155 |
pickle.dump(knn_w2v, open('knn_w2v.pkl','wb')) |
|
|
156 |
|
|
|
157 |
|
|
|
158 |
# In[10]: |
|
|
159 |
|
|
|
160 |
|
|
|
161 |
#train model for Naive Bayes. |
|
|
162 |
#Bernoulli NB can only focus on a single keyword, |
|
|
163 |
#but will also count how many times that keyword does not occur in the document |
|
|
164 |
from sklearn.naive_bayes import BernoulliNB |
|
|
165 |
|
|
|
166 |
|
|
|
167 |
bnb_bow = BernoulliNB() |
|
|
168 |
bnb_tf = BernoulliNB() |
|
|
169 |
bnb_hash = BernoulliNB() |
|
|
170 |
bnb_w2v = BernoulliNB() |
|
|
171 |
|
|
|
172 |
bnb_bow.fit(X_bow_train, y_bow_train) |
|
|
173 |
bnb_tf.fit(X_tf_train, y_tf_train) |
|
|
174 |
bnb_hash.fit(X_hash_train, y_hash_train) |
|
|
175 |
bnb_w2v.fit(X_w2v_train, y_w2v_train) |
|
|
176 |
|
|
|
177 |
|
|
|
178 |
# In[11]: |
|
|
179 |
|
|
|
180 |
|
|
|
181 |
pickle.dump(bnb_bow, open('bnb_bow.pkl','wb')) |
|
|
182 |
pickle.dump(bnb_tf, open('bnb_tf.pkl','wb')) |
|
|
183 |
pickle.dump(bnb_hash, open('bnb_hash.pkl','wb')) |
|
|
184 |
pickle.dump(bnb_w2v, open('bnb_w2v.pkl','wb')) |
|
|
185 |
|
|
|
186 |
|
|
|
187 |
# In[ ]: |
|
|
188 |
|
|
|
189 |
|
|
|
190 |
|
|
|
191 |
|