[85d58a]: / code / ModelTraining.py

Download this file

192 lines (127 with data), 5.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import warnings
warnings.filterwarnings('ignore')
X_bow_train = pd.read_csv('X_bow_train.csv')
X_bow_test = pd.read_csv('X_bow_test.csv')
y_bow_train = pd.read_csv('y_bow_train.csv')
y_bow_test = pd.read_csv('y_bow_test.csv')
X_tf_train = pd.read_csv('X_tf_train.csv')
X_tf_test = pd.read_csv('X_tf_test.csv')
y_tf_train = pd.read_csv('y_tf_train.csv')
y_tf_test = pd.read_csv('y_tf_test.csv')
X_hash_train = pd.read_csv('X_hash_train.csv')
X_hash_test = pd.read_csv('X_hash_test.csv')
y_hash_train = pd.read_csv('y_hash_train.csv')
y_hash_test = pd.read_csv('y_hash_test.csv')
X_w2v_train = pd.read_csv('X_w2v_train.csv')
X_w2v_test = pd.read_csv('X_w2v_test.csv')
y_w2v_train = pd.read_csv('y_w2v_train.csv')
y_w2v_test = pd.read_csv('y_w2v_test.csv')
# In[2]:
import pickle
from sklearn.ensemble import RandomForestClassifier
# train model with all features
rf_bow = RandomForestClassifier(n_estimators=100,
max_features=None,
oob_score=True,
n_jobs=-1,
random_state=0)
rf_tf = RandomForestClassifier(n_estimators=100,
max_features=None,
oob_score=True,
n_jobs=-1,
random_state=0)
rf_hash = RandomForestClassifier(n_estimators=100,
max_features=None,
oob_score=True,
n_jobs=-1,
random_state=0)
rf_w2v = RandomForestClassifier(n_estimators=100,
max_features=None,
oob_score=True,
n_jobs=-1,
random_state=0)
rf_bow.fit(X_bow_train, y_bow_train)
rf_tf.fit(X_tf_train, y_tf_train)
rf_hash.fit(X_hash_train, y_hash_train)
rf_w2v.fit(X_w2v_train, y_w2v_train)
# In[3]:
pickle.dump(rf_bow, open('rf_bow.pkl','wb'))
pickle.dump(rf_tf, open('rf_tf.pkl','wb'))
pickle.dump(rf_hash, open('rf_hash.pkl','wb'))
pickle.dump(rf_w2v, open('rf_w2v.pkl','wb'))
# In[4]:
#train model for logistic Regression which is not inherently multiclass classifers.
#In this case, we use defualt auto setting that if input is binary using OVR otherwise using multnomial
from sklearn.linear_model import LogisticRegression
lr_bow = LogisticRegression()
lr_tf = LogisticRegression()
lr_hash = LogisticRegression()
lr_w2v = LogisticRegression()
lr_bow.fit(X_bow_train, y_bow_train)
lr_tf.fit(X_tf_train, y_tf_train)
lr_hash.fit(X_hash_train, y_hash_train)
lr_w2v.fit(X_w2v_train, y_w2v_train)
# In[5]:
pickle.dump(lr_bow, open('lr_bow.pkl','wb'))
pickle.dump(lr_tf, open('lr_tf.pkl','wb'))
pickle.dump(lr_hash, open('lr_hash.pkl','wb'))
pickle.dump(lr_w2v, open('lr_w2v.pkl','wb'))
# In[6]:
#train model for linear svm, which is not inherently multiclass classifers.
#In this case, we use One VS Rest to save computing
from sklearn.svm import SVC
svc_bow = SVC(decision_function_shape='ovr')
svc_tf = SVC(decision_function_shape='ovr')
svc_hash = SVC(decision_function_shape='ovr')
svc_w2v = SVC(decision_function_shape='ovr')
svc_bow.fit(X_bow_train, y_bow_train)
svc_tf.fit(X_tf_train, y_tf_train)
svc_hash.fit(X_hash_train, y_hash_train)
svc_w2v.fit(X_w2v_train, y_w2v_train)
# In[7]:
pickle.dump(svc_bow, open('svc_bow.pkl','wb'))
pickle.dump(svc_tf, open('svc_tf.pkl','wb'))
pickle.dump(svc_hash, open('svc_hash.pkl','wb'))
pickle.dump(svc_w2v, open('svc_w2v.pkl','wb'))
# In[8]:
#train model for KNN
from sklearn.neighbors import KNeighborsClassifier
knn_bow = KNeighborsClassifier(n_neighbors=3)
knn_tf = KNeighborsClassifier(n_neighbors=3)
knn_hash = KNeighborsClassifier(n_neighbors=3)
knn_w2v = KNeighborsClassifier(n_neighbors=3)
knn_bow.fit(X_bow_train, y_bow_train)
knn_tf.fit(X_tf_train, y_tf_train)
knn_hash.fit(X_hash_train, y_hash_train)
knn_w2v.fit(X_w2v_train, y_w2v_train)
# In[9]:
pickle.dump(knn_bow, open('knn_bow.pkl','wb'))
pickle.dump(knn_tf, open('knn_tf.pkl','wb'))
pickle.dump(knn_hash, open('knn_hash.pkl','wb'))
pickle.dump(knn_w2v, open('knn_w2v.pkl','wb'))
# In[10]:
#train model for Naive Bayes.
#Bernoulli NB can only focus on a single keyword,
#but will also count how many times that keyword does not occur in the document
from sklearn.naive_bayes import BernoulliNB
bnb_bow = BernoulliNB()
bnb_tf = BernoulliNB()
bnb_hash = BernoulliNB()
bnb_w2v = BernoulliNB()
bnb_bow.fit(X_bow_train, y_bow_train)
bnb_tf.fit(X_tf_train, y_tf_train)
bnb_hash.fit(X_hash_train, y_hash_train)
bnb_w2v.fit(X_w2v_train, y_w2v_train)
# In[11]:
pickle.dump(bnb_bow, open('bnb_bow.pkl','wb'))
pickle.dump(bnb_tf, open('bnb_tf.pkl','wb'))
pickle.dump(bnb_hash, open('bnb_hash.pkl','wb'))
pickle.dump(bnb_w2v, open('bnb_w2v.pkl','wb'))
# In[ ]: