Diff of /src/cnn/cnn.py [000000] .. [71ad2f]

Switch to unified view

a b/src/cnn/cnn.py
1
import torch 
2
import torch.nn as nn 
3
4
class character_cnn(nn.Module):
5
    def __init__(self, vocabulary, sequence_length, number_classes = 10):
6
        super().__init__()
7
8
        self.conv1 = nn.Sequential(nn.Conv1d(len(vocabulary)+1, 256, kernel_size = 7, padding = 0),
9
                                   nn.ReLU(),
10
                                   nn.MaxPool1d(3)
11
                                   )
12
13
        self.conv2 = nn.Sequential(nn.Conv1d(256, 256, kernel_size=7, padding=0),
14
                                   nn.ReLU(),
15
                                   nn.MaxPool1d(3)
16
                                   )
17
        
18
        self.conv3 = nn.Sequential(nn.Conv1d(256, 256, kernel_size=3, padding=0),
19
                                   nn.ReLU()
20
                                   )
21
22
        self.conv4 = nn.Sequential(nn.Conv1d(256, 256, kernel_size=3, padding=0),
23
                                   nn.ReLU()
24
                                   )
25
        
26
        input_shape = (1, len(vocabulary)+1, sequence_length)
27
        self.output_dimension = self._get_conv_output(input_shape)
28
29
        self.fc1 = nn.Sequential(
30
            nn.Linear(self.output_dimension, 1024),
31
            nn.ReLU(),
32
            nn.Dropout(0.5)
33
        )
34
35
        self.fc2 = nn.Sequential(
36
            nn.Linear(1024, 1024),
37
            nn.ReLU(),
38
            nn.Dropout(0.5)
39
        )
40
41
        self.fc3 = nn.Linear(1024, number_classes)
42
43
44
        self.act = nn.Sigmoid()
45
        
46
    def _get_conv_output(self, shape):
47
        x = torch.rand(shape)
48
        x = self.conv1(x)
49
        x = self.conv2(x)
50
        x = self.conv3(x)
51
        x = self.conv4(x)
52
        x = x.view(x.size(0), -1)
53
        output_dimension = x.size(1)
54
        return output_dimension
55
56
    
57
    def forward(self, x):
58
        x = self.conv1(x)
59
        x = self.conv2(x)
60
        x = self.conv3(x)
61
        x = self.conv4(x)
62
        x = x.view(x.size(0), -1)
63
        x = self.fc1(x)
64
        x = self.fc2(x)
65
        x = self.fc3(x)
66
        x = self.act(x)
67
        return x
68
69
70
71
72