import torch
import torch.nn as nn
class character_cnn(nn.Module):
def __init__(self, vocabulary, sequence_length, number_classes = 10):
super().__init__()
self.conv1 = nn.Sequential(nn.Conv1d(len(vocabulary)+1, 256, kernel_size = 7, padding = 0),
nn.ReLU(),
nn.MaxPool1d(3)
)
self.conv2 = nn.Sequential(nn.Conv1d(256, 256, kernel_size=7, padding=0),
nn.ReLU(),
nn.MaxPool1d(3)
)
self.conv3 = nn.Sequential(nn.Conv1d(256, 256, kernel_size=3, padding=0),
nn.ReLU()
)
self.conv4 = nn.Sequential(nn.Conv1d(256, 256, kernel_size=3, padding=0),
nn.ReLU()
)
input_shape = (1, len(vocabulary)+1, sequence_length)
self.output_dimension = self._get_conv_output(input_shape)
self.fc1 = nn.Sequential(
nn.Linear(self.output_dimension, 1024),
nn.ReLU(),
nn.Dropout(0.5)
)
self.fc2 = nn.Sequential(
nn.Linear(1024, 1024),
nn.ReLU(),
nn.Dropout(0.5)
)
self.fc3 = nn.Linear(1024, number_classes)
self.act = nn.Sigmoid()
def _get_conv_output(self, shape):
x = torch.rand(shape)
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = x.view(x.size(0), -1)
output_dimension = x.size(1)
return output_dimension
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
x = self.act(x)
return x