Diff of /dataLoader/NextXVisit.py [000000] .. [bad60c]

Switch to unified view

a b/dataLoader/NextXVisit.py
1
import numpy as np
2
from torch.utils.data.dataset import Dataset
3
from dataLoader.utils import seq_padding,code2index, position_idx, index_seg
4
import torch
5
6
7
class NextVisit(Dataset):
8
    def __init__(self, token2idx, label2idx, age2idx, dataframe, max_len, code='code', age='age', label='label'):
9
        # dataframe preproecssing
10
        # filter out the patient with number of visits less than min_visit
11
        self.vocab = token2idx
12
        self.label_vocab = label2idx
13
        self.max_len = max_len
14
        self.code = dataframe[code]
15
        self.age = dataframe[age]
16
        self.label = dataframe[label]
17
        self.patid = dataframe.patid
18
19
        self.age2idx = age2idx
20
21
    def __getitem__(self, index):
22
        """
23
        return: age, code, position, segmentation, mask, label
24
        """
25
        # cut data
26
        age = self.age[index]
27
        code = self.code[index]
28
        label = self.label[index]
29
        patid = self.patid[index]
30
31
        # extract data
32
        age = age[(-self.max_len+1):]
33
        code = code[(-self.max_len+1):]
34
35
        # avoid data cut with first element to be 'SEP'
36
        if code[0] != 'SEP':
37
            code = np.append(np.array(['CLS']), code)
38
            age = np.append(np.array(age[0]), age)
39
        else:
40
            code[0] = 'CLS'
41
42
        # mask 0:len(code) to 1, padding to be 0
43
        mask = np.ones(self.max_len)
44
        mask[len(code):] = 0
45
46
        # pad age sequence and code sequence
47
        age = seq_padding(age, self.max_len, token2idx=self.age2idx)
48
49
        tokens, code = code2index(code, self.vocab)
50
        _, label = code2index(label, self.label_vocab)
51
52
        # get position code and segment code
53
        tokens = seq_padding(tokens, self.max_len)
54
        position = position_idx(tokens)
55
        segment = index_seg(tokens)
56
57
        # pad code and label
58
        code = seq_padding(code, self.max_len, symbol=self.vocab['PAD'])
59
        label = seq_padding(label, self.max_len, symbol=-1)
60
61
        return torch.LongTensor(age), torch.LongTensor(code), torch.LongTensor(position), torch.LongTensor(segment), \
62
               torch.LongTensor(mask), torch.LongTensor(label), torch.LongTensor([int(patid)])
63
64
    def __len__(self):
65
        return len(self.code)