import numpy as np
from torch.utils.data.dataset import Dataset
from dataLoader.utils import seq_padding,code2index, position_idx, index_seg
import torch
class NextVisit(Dataset):
def __init__(self, token2idx, label2idx, age2idx, dataframe, max_len, code='code', age='age', label='label'):
# dataframe preproecssing
# filter out the patient with number of visits less than min_visit
self.vocab = token2idx
self.label_vocab = label2idx
self.max_len = max_len
self.code = dataframe[code]
self.age = dataframe[age]
self.label = dataframe[label]
self.patid = dataframe.patid
self.age2idx = age2idx
def __getitem__(self, index):
"""
return: age, code, position, segmentation, mask, label
"""
# cut data
age = self.age[index]
code = self.code[index]
label = self.label[index]
patid = self.patid[index]
# extract data
age = age[(-self.max_len+1):]
code = code[(-self.max_len+1):]
# avoid data cut with first element to be 'SEP'
if code[0] != 'SEP':
code = np.append(np.array(['CLS']), code)
age = np.append(np.array(age[0]), age)
else:
code[0] = 'CLS'
# mask 0:len(code) to 1, padding to be 0
mask = np.ones(self.max_len)
mask[len(code):] = 0
# pad age sequence and code sequence
age = seq_padding(age, self.max_len, token2idx=self.age2idx)
tokens, code = code2index(code, self.vocab)
_, label = code2index(label, self.label_vocab)
# get position code and segment code
tokens = seq_padding(tokens, self.max_len)
position = position_idx(tokens)
segment = index_seg(tokens)
# pad code and label
code = seq_padding(code, self.max_len, symbol=self.vocab['PAD'])
label = seq_padding(label, self.max_len, symbol=-1)
return torch.LongTensor(age), torch.LongTensor(code), torch.LongTensor(position), torch.LongTensor(segment), \
torch.LongTensor(mask), torch.LongTensor(label), torch.LongTensor([int(patid)])
def __len__(self):
return len(self.code)