--- a +++ b/HINT/learn_multiple_aim.py @@ -0,0 +1,123 @@ +## 1. import +## 2. input & hyperparameter +## 3. pretrain +## 4. 'dataloader, model build, train, inference' +################################################ + + +## 1. import +import torch, os, sys +torch.manual_seed(0) +sys.path.append('.') +from HINT.dataloader import csv_three_feature_2_dataloader, generate_admet_dataloader_lst, csv_three_feature_2_complete_dataloader +from HINT.molecule_encode import MPNN, ADMET +from HINT.icdcode_encode import GRAM, build_icdcode2ancestor_dict +from HINT.protocol_encode import Protocol_Embedding +from HINT.model import HINTModel_multi +device = torch.device("cpu") +if not os.path.exists("figure"): + os.makedirs("figure") + + + + +## 2. data +base_name = 'phase_II' +base_name = "indication" +# base_name = 'phase_III' +# base_name = "toy" +datafolder = "auxiliary_data" +train_file = os.path.join(datafolder, base_name + '_train.csv') +valid_file = os.path.join(datafolder, base_name + '_valid.csv') +test_file = os.path.join(datafolder, base_name + '_test.csv') + + + + + +## 3. pretrain +mpnn_model = MPNN(mpnn_hidden_size = 50, mpnn_depth=3, device = device) +admet_model_path = "save_model/admet_model.ckpt" +if not os.path.exists(admet_model_path): + admet_dataloader_lst = generate_admet_dataloader_lst(batch_size=32) + admet_trainloader_lst = [i[0] for i in admet_dataloader_lst] + admet_testloader_lst = [i[1] for i in admet_dataloader_lst] + admet_model = ADMET(molecule_encoder = mpnn_model, + highway_num=2, + device = device, + epoch=3, + lr=5e-4, + weight_decay=0, + save_name = 'admet_') + admet_model.train(admet_trainloader_lst, admet_testloader_lst) + torch.save(admet_model, admet_model_path) +else: + admet_model = torch.load(admet_model_path) + admet_model = admet_model.to(device) + admet_model.set_device(device) + + + + +## 4. dataloader, model build, train, inference +train_loader = csv_three_feature_2_dataloader(train_file, shuffle=True, batch_size=32) +valid_loader = csv_three_feature_2_dataloader(valid_file, shuffle=False, batch_size=32) +test_loader = csv_three_feature_2_dataloader(test_file, shuffle=False, batch_size=32) + + + + +icdcode2ancestor_dict = build_icdcode2ancestor_dict() +gram_model = GRAM(embedding_dim = 50, icdcode2ancestor = icdcode2ancestor_dict, device = device) +protocol_model = Protocol_Embedding(output_dim = 50, highway_num=3, device = device) + + + +hint_model_path = "save_model2/" + base_name + ".ckpt" +if not os.path.exists(hint_model_path): + model = HINTModel_multi(molecule_encoder = mpnn_model, + disease_encoder = gram_model, + protocol_encoder = protocol_model, + device = device, + global_embed_size = 50, + highway_num_layer = 2, + prefix_name = base_name, + # gnn_hidden_size = 50, + epoch = 5, + lr = 1e-3, + weight_decay = 0, + ) + # model.init_pretrain(admet_model) + pred_all, label_all = model.learn(train_loader, valid_loader, test_loader) + # model.bootstrap_test(test_loader) + # torch.save(model, hint_model_path) +else: + model = torch.load(hint_model_path) + model.bootstrap_test(test_loader) + + + + +import matplotlib.pyplot as plt +import numpy as np +from sklearn.datasets import make_classification +from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay +lst = np.array([0,1,2,3]) +cm = confusion_matrix(label_all, pred_all, labels=lst) +disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=lst) +disp.plot() +plt.xlabel("predicted label", fontsize = 21) +plt.ylabel("True label", fontsize = 20) +plt.tight_layout() +plt.savefig("figure/"+base_name + "_cm.png") + + + + + + + + + + +