[bc9e98]: / HINT / learn_multiple_aim.py

Download this file

124 lines (86 with data), 3.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
## 1. import
## 2. input & hyperparameter
## 3. pretrain
## 4. 'dataloader, model build, train, inference'
################################################
## 1. import
import torch, os, sys
torch.manual_seed(0)
sys.path.append('.')
from HINT.dataloader import csv_three_feature_2_dataloader, generate_admet_dataloader_lst, csv_three_feature_2_complete_dataloader
from HINT.molecule_encode import MPNN, ADMET
from HINT.icdcode_encode import GRAM, build_icdcode2ancestor_dict
from HINT.protocol_encode import Protocol_Embedding
from HINT.model import HINTModel_multi
device = torch.device("cpu")
if not os.path.exists("figure"):
os.makedirs("figure")
## 2. data
base_name = 'phase_II'
base_name = "indication"
# base_name = 'phase_III'
# base_name = "toy"
datafolder = "auxiliary_data"
train_file = os.path.join(datafolder, base_name + '_train.csv')
valid_file = os.path.join(datafolder, base_name + '_valid.csv')
test_file = os.path.join(datafolder, base_name + '_test.csv')
## 3. pretrain
mpnn_model = MPNN(mpnn_hidden_size = 50, mpnn_depth=3, device = device)
admet_model_path = "save_model/admet_model.ckpt"
if not os.path.exists(admet_model_path):
admet_dataloader_lst = generate_admet_dataloader_lst(batch_size=32)
admet_trainloader_lst = [i[0] for i in admet_dataloader_lst]
admet_testloader_lst = [i[1] for i in admet_dataloader_lst]
admet_model = ADMET(molecule_encoder = mpnn_model,
highway_num=2,
device = device,
epoch=3,
lr=5e-4,
weight_decay=0,
save_name = 'admet_')
admet_model.train(admet_trainloader_lst, admet_testloader_lst)
torch.save(admet_model, admet_model_path)
else:
admet_model = torch.load(admet_model_path)
admet_model = admet_model.to(device)
admet_model.set_device(device)
## 4. dataloader, model build, train, inference
train_loader = csv_three_feature_2_dataloader(train_file, shuffle=True, batch_size=32)
valid_loader = csv_three_feature_2_dataloader(valid_file, shuffle=False, batch_size=32)
test_loader = csv_three_feature_2_dataloader(test_file, shuffle=False, batch_size=32)
icdcode2ancestor_dict = build_icdcode2ancestor_dict()
gram_model = GRAM(embedding_dim = 50, icdcode2ancestor = icdcode2ancestor_dict, device = device)
protocol_model = Protocol_Embedding(output_dim = 50, highway_num=3, device = device)
hint_model_path = "save_model2/" + base_name + ".ckpt"
if not os.path.exists(hint_model_path):
model = HINTModel_multi(molecule_encoder = mpnn_model,
disease_encoder = gram_model,
protocol_encoder = protocol_model,
device = device,
global_embed_size = 50,
highway_num_layer = 2,
prefix_name = base_name,
# gnn_hidden_size = 50,
epoch = 5,
lr = 1e-3,
weight_decay = 0,
)
# model.init_pretrain(admet_model)
pred_all, label_all = model.learn(train_loader, valid_loader, test_loader)
# model.bootstrap_test(test_loader)
# torch.save(model, hint_model_path)
else:
model = torch.load(hint_model_path)
model.bootstrap_test(test_loader)
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_classification
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
lst = np.array([0,1,2,3])
cm = confusion_matrix(label_all, pred_all, labels=lst)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=lst)
disp.plot()
plt.xlabel("predicted label", fontsize = 21)
plt.ylabel("True label", fontsize = 20)
plt.tight_layout()
plt.savefig("figure/"+base_name + "_cm.png")