|
a |
|
b/segmentation/generate_lesion_measures.py |
|
|
1 |
#%% |
|
|
2 |
''' |
|
|
3 |
Copyright (c) Microsoft Corporation. All rights reserved. |
|
|
4 |
Licensed under the MIT License. |
|
|
5 |
''' |
|
|
6 |
import pandas as pd |
|
|
7 |
import numpy as np |
|
|
8 |
import SimpleITK as sitk |
|
|
9 |
import os |
|
|
10 |
from glob import glob |
|
|
11 |
import sys |
|
|
12 |
import argparse |
|
|
13 |
config_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..") |
|
|
14 |
sys.path.append(config_dir) |
|
|
15 |
from config import RESULTS_FOLDER |
|
|
16 |
from metrics.metrics import * |
|
|
17 |
|
|
|
18 |
def get_spacing_from_niftipath(path): |
|
|
19 |
spacing = sitk.ReadImage(path).GetSpacing() |
|
|
20 |
return spacing |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
def main(args): |
|
|
24 |
fold = args.fold |
|
|
25 |
network = args.network_name |
|
|
26 |
inputsize = args.input_patch_size |
|
|
27 |
experiment_code = f"{network}_fold{fold}_randcrop{inputsize}" |
|
|
28 |
preddir = os.path.join(RESULTS_FOLDER, 'predictions', f'fold{fold}', network, experiment_code) |
|
|
29 |
predpaths = sorted(glob(os.path.join(preddir, '*.nii.gz'))) |
|
|
30 |
gtpaths = sorted(list(pd.read_csv('./../data_split/test_filepaths.csv')['GTPATH'])) |
|
|
31 |
ptpaths = sorted(list(pd.read_csv('./../data_split/test_filepaths.csv')['PTPATH'])) # PET image paths (ptpaths) for calculating the detection metrics using criterion3 |
|
|
32 |
|
|
|
33 |
imageids = [os.path.basename(path)[:-7] for path in gtpaths] |
|
|
34 |
DSC = [] |
|
|
35 |
SUVmean_orig, SUVmean_pred = [], [] |
|
|
36 |
SUVmax_orig, SUVmax_pred = [], [] |
|
|
37 |
LesionCount_orig, LesionCount_pred = [], [] |
|
|
38 |
TMTV_orig, TMTV_pred = [], [] |
|
|
39 |
TLG_orig, TLG_pred = [], [] |
|
|
40 |
Dmax_orig, Dmax_pred = [], [] |
|
|
41 |
|
|
|
42 |
for i in range(len(gtpaths)): |
|
|
43 |
ptpath = ptpaths[i] |
|
|
44 |
gtpath = gtpaths[i] |
|
|
45 |
predpath = predpaths[i] |
|
|
46 |
|
|
|
47 |
ptarray = get_3darray_from_niftipath(ptpath) |
|
|
48 |
gtarray = get_3darray_from_niftipath(gtpath) |
|
|
49 |
predarray = get_3darray_from_niftipath(predpath) |
|
|
50 |
spacing = get_spacing_from_niftipath(gtpath) |
|
|
51 |
|
|
|
52 |
# Dice score between mask gt and pred |
|
|
53 |
dsc = calculate_patient_level_dice_score(gtarray, predarray) |
|
|
54 |
# Lesion SUVmean |
|
|
55 |
suvmean_orig = calculate_patient_level_lesion_suvmean_suvmax(ptarray, gtarray, marker='SUVmean') |
|
|
56 |
suvmean_pred = calculate_patient_level_lesion_suvmean_suvmax(ptarray, predarray, marker='SUVmean') |
|
|
57 |
# Lesion SUVmax |
|
|
58 |
suvmax_orig = calculate_patient_level_lesion_suvmean_suvmax(ptarray, gtarray, marker='SUVmax') |
|
|
59 |
suvmax_pred = calculate_patient_level_lesion_suvmean_suvmax(ptarray, predarray, marker='SUVmax') |
|
|
60 |
# Lesion Count |
|
|
61 |
lesioncount_orig = calculate_patient_level_lesion_count(gtarray) |
|
|
62 |
lesioncount_pred = calculate_patient_level_lesion_count(predarray) |
|
|
63 |
# TMTV |
|
|
64 |
tmtv_orig = calculate_patient_level_tmtv(gtarray, spacing) |
|
|
65 |
tmtv_pred = calculate_patient_level_tmtv(predarray, spacing) |
|
|
66 |
# TLG |
|
|
67 |
tlg_orig = calculate_patient_level_tlg(ptarray, gtarray, spacing) |
|
|
68 |
tlg_pred = calculate_patient_level_tlg(ptarray, predarray, spacing) |
|
|
69 |
# Dmax |
|
|
70 |
dmax_orig = calculate_patient_level_dissemination(gtarray, spacing) |
|
|
71 |
dmax_pred = calculate_patient_level_dissemination(predarray, spacing) |
|
|
72 |
|
|
|
73 |
DSC.append(dsc) |
|
|
74 |
SUVmean_orig.append(suvmean_orig) |
|
|
75 |
SUVmean_pred.append(suvmean_pred) |
|
|
76 |
SUVmax_orig.append(suvmax_orig) |
|
|
77 |
SUVmax_pred.append(suvmax_pred) |
|
|
78 |
LesionCount_orig.append(lesioncount_orig) |
|
|
79 |
LesionCount_pred.append(lesioncount_pred) |
|
|
80 |
TMTV_orig.append(tmtv_orig) |
|
|
81 |
TMTV_pred.append(tmtv_pred) |
|
|
82 |
TLG_orig.append(tlg_orig) |
|
|
83 |
TLG_pred.append(tlg_pred) |
|
|
84 |
Dmax_orig.append(dmax_orig) |
|
|
85 |
Dmax_pred.append(dmax_pred) |
|
|
86 |
|
|
|
87 |
|
|
|
88 |
print(f"{i}: {imageids[i]}") |
|
|
89 |
print(f"Dice Score: {round(dsc,4)}") |
|
|
90 |
print(f"SUVmean: GT: {suvmean_orig}, Pred: {suvmean_pred}") |
|
|
91 |
print(f"SUVmax: GT: {suvmax_orig}, Pred: {suvmax_pred}") |
|
|
92 |
print(f"LesionCount: GT: {lesioncount_orig}, Pred: {lesioncount_pred}") |
|
|
93 |
print(f"TMTV: GT: {tmtv_orig} ml, Pred: {tmtv_pred} ml") |
|
|
94 |
print(f"TLG: GT: {tlg_orig} ml, Pred: {tlg_pred} ml") |
|
|
95 |
print(f"Dmax: GT: {dmax_orig} cm, Pred: {dmax_pred} cm") |
|
|
96 |
print("\n") |
|
|
97 |
|
|
|
98 |
save_lesionmeasures_dir = os.path.join(RESULTS_FOLDER, f'test_lesion_measures', 'fold'+str(fold), network, experiment_code) |
|
|
99 |
os.makedirs(save_lesionmeasures_dir, exist_ok=True) |
|
|
100 |
filepath = os.path.join(save_lesionmeasures_dir, f'testlesionmeasures.csv') |
|
|
101 |
|
|
|
102 |
data = np.column_stack( |
|
|
103 |
[ |
|
|
104 |
imageids, |
|
|
105 |
DSC, |
|
|
106 |
SUVmean_orig, |
|
|
107 |
SUVmean_pred, |
|
|
108 |
SUVmax_orig, |
|
|
109 |
SUVmax_pred, |
|
|
110 |
LesionCount_orig, |
|
|
111 |
LesionCount_pred, |
|
|
112 |
TMTV_orig, |
|
|
113 |
TMTV_pred, |
|
|
114 |
TLG_orig, |
|
|
115 |
TLG_pred, |
|
|
116 |
Dmax_orig, |
|
|
117 |
Dmax_pred |
|
|
118 |
] |
|
|
119 |
) |
|
|
120 |
|
|
|
121 |
data_df = pd.DataFrame( |
|
|
122 |
data=data, |
|
|
123 |
columns=[ |
|
|
124 |
'PatientID', |
|
|
125 |
'DSC', |
|
|
126 |
'SUVmean_orig', |
|
|
127 |
'SUVmean_pred', |
|
|
128 |
'SUVmax_orig', |
|
|
129 |
'SUVmax_pred', |
|
|
130 |
'LesionCount_orig', |
|
|
131 |
'LesionCount_pred', |
|
|
132 |
'TMTV_orig', |
|
|
133 |
'TMTV_pred', |
|
|
134 |
'TLG_orig', |
|
|
135 |
'TLG_pred', |
|
|
136 |
'Dmax_orig', |
|
|
137 |
'Dmax_pred' |
|
|
138 |
] |
|
|
139 |
) |
|
|
140 |
data_df.to_csv(filepath, index=False) |
|
|
141 |
|
|
|
142 |
|
|
|
143 |
if __name__ == "__main__": |
|
|
144 |
parser = argparse.ArgumentParser(description='Lymphoma PET/CT lesion segmentation using MONAI-PyTorch') |
|
|
145 |
parser.add_argument('--fold', type=int, default=0, metavar='fold', |
|
|
146 |
help='validation fold (default: 0), remaining folds will be used for training') |
|
|
147 |
parser.add_argument('--network-name', type=str, default='unet', metavar='netname', |
|
|
148 |
help='network name for training (default: unet)') |
|
|
149 |
parser.add_argument('--input-patch-size', type=int, default=192, metavar='inputsize', |
|
|
150 |
help='size of cropped input patch for training (default: 192)') |
|
|
151 |
args = parser.parse_args() |
|
|
152 |
main(args) |
|
|
153 |
|