[18498b]: / segmentation / generate_lesion_measures.py

Download this file

153 lines (137 with data), 6.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#%%
'''
Copyright (c) Microsoft Corporation. All rights reserved.
Licensed under the MIT License.
'''
import pandas as pd
import numpy as np
import SimpleITK as sitk
import os
from glob import glob
import sys
import argparse
config_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..")
sys.path.append(config_dir)
from config import RESULTS_FOLDER
from metrics.metrics import *
def get_spacing_from_niftipath(path):
spacing = sitk.ReadImage(path).GetSpacing()
return spacing
def main(args):
fold = args.fold
network = args.network_name
inputsize = args.input_patch_size
experiment_code = f"{network}_fold{fold}_randcrop{inputsize}"
preddir = os.path.join(RESULTS_FOLDER, 'predictions', f'fold{fold}', network, experiment_code)
predpaths = sorted(glob(os.path.join(preddir, '*.nii.gz')))
gtpaths = sorted(list(pd.read_csv('./../data_split/test_filepaths.csv')['GTPATH']))
ptpaths = sorted(list(pd.read_csv('./../data_split/test_filepaths.csv')['PTPATH'])) # PET image paths (ptpaths) for calculating the detection metrics using criterion3
imageids = [os.path.basename(path)[:-7] for path in gtpaths]
DSC = []
SUVmean_orig, SUVmean_pred = [], []
SUVmax_orig, SUVmax_pred = [], []
LesionCount_orig, LesionCount_pred = [], []
TMTV_orig, TMTV_pred = [], []
TLG_orig, TLG_pred = [], []
Dmax_orig, Dmax_pred = [], []
for i in range(len(gtpaths)):
ptpath = ptpaths[i]
gtpath = gtpaths[i]
predpath = predpaths[i]
ptarray = get_3darray_from_niftipath(ptpath)
gtarray = get_3darray_from_niftipath(gtpath)
predarray = get_3darray_from_niftipath(predpath)
spacing = get_spacing_from_niftipath(gtpath)
# Dice score between mask gt and pred
dsc = calculate_patient_level_dice_score(gtarray, predarray)
# Lesion SUVmean
suvmean_orig = calculate_patient_level_lesion_suvmean_suvmax(ptarray, gtarray, marker='SUVmean')
suvmean_pred = calculate_patient_level_lesion_suvmean_suvmax(ptarray, predarray, marker='SUVmean')
# Lesion SUVmax
suvmax_orig = calculate_patient_level_lesion_suvmean_suvmax(ptarray, gtarray, marker='SUVmax')
suvmax_pred = calculate_patient_level_lesion_suvmean_suvmax(ptarray, predarray, marker='SUVmax')
# Lesion Count
lesioncount_orig = calculate_patient_level_lesion_count(gtarray)
lesioncount_pred = calculate_patient_level_lesion_count(predarray)
# TMTV
tmtv_orig = calculate_patient_level_tmtv(gtarray, spacing)
tmtv_pred = calculate_patient_level_tmtv(predarray, spacing)
# TLG
tlg_orig = calculate_patient_level_tlg(ptarray, gtarray, spacing)
tlg_pred = calculate_patient_level_tlg(ptarray, predarray, spacing)
# Dmax
dmax_orig = calculate_patient_level_dissemination(gtarray, spacing)
dmax_pred = calculate_patient_level_dissemination(predarray, spacing)
DSC.append(dsc)
SUVmean_orig.append(suvmean_orig)
SUVmean_pred.append(suvmean_pred)
SUVmax_orig.append(suvmax_orig)
SUVmax_pred.append(suvmax_pred)
LesionCount_orig.append(lesioncount_orig)
LesionCount_pred.append(lesioncount_pred)
TMTV_orig.append(tmtv_orig)
TMTV_pred.append(tmtv_pred)
TLG_orig.append(tlg_orig)
TLG_pred.append(tlg_pred)
Dmax_orig.append(dmax_orig)
Dmax_pred.append(dmax_pred)
print(f"{i}: {imageids[i]}")
print(f"Dice Score: {round(dsc,4)}")
print(f"SUVmean: GT: {suvmean_orig}, Pred: {suvmean_pred}")
print(f"SUVmax: GT: {suvmax_orig}, Pred: {suvmax_pred}")
print(f"LesionCount: GT: {lesioncount_orig}, Pred: {lesioncount_pred}")
print(f"TMTV: GT: {tmtv_orig} ml, Pred: {tmtv_pred} ml")
print(f"TLG: GT: {tlg_orig} ml, Pred: {tlg_pred} ml")
print(f"Dmax: GT: {dmax_orig} cm, Pred: {dmax_pred} cm")
print("\n")
save_lesionmeasures_dir = os.path.join(RESULTS_FOLDER, f'test_lesion_measures', 'fold'+str(fold), network, experiment_code)
os.makedirs(save_lesionmeasures_dir, exist_ok=True)
filepath = os.path.join(save_lesionmeasures_dir, f'testlesionmeasures.csv')
data = np.column_stack(
[
imageids,
DSC,
SUVmean_orig,
SUVmean_pred,
SUVmax_orig,
SUVmax_pred,
LesionCount_orig,
LesionCount_pred,
TMTV_orig,
TMTV_pred,
TLG_orig,
TLG_pred,
Dmax_orig,
Dmax_pred
]
)
data_df = pd.DataFrame(
data=data,
columns=[
'PatientID',
'DSC',
'SUVmean_orig',
'SUVmean_pred',
'SUVmax_orig',
'SUVmax_pred',
'LesionCount_orig',
'LesionCount_pred',
'TMTV_orig',
'TMTV_pred',
'TLG_orig',
'TLG_pred',
'Dmax_orig',
'Dmax_pred'
]
)
data_df.to_csv(filepath, index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Lymphoma PET/CT lesion segmentation using MONAI-PyTorch')
parser.add_argument('--fold', type=int, default=0, metavar='fold',
help='validation fold (default: 0), remaining folds will be used for training')
parser.add_argument('--network-name', type=str, default='unet', metavar='netname',
help='network name for training (default: unet)')
parser.add_argument('--input-patch-size', type=int, default=192, metavar='inputsize',
help='size of cropped input patch for training (default: 192)')
args = parser.parse_args()
main(args)