|
a |
|
b/api/main.py |
|
|
1 |
from fastapi import FastAPI, File, UploadFile |
|
|
2 |
from fastapi.middleware.cors import CORSMiddleware |
|
|
3 |
import uvicorn |
|
|
4 |
import numpy as np |
|
|
5 |
from io import BytesIO |
|
|
6 |
from PIL import Image |
|
|
7 |
import tensorflow as tf |
|
|
8 |
|
|
|
9 |
app = FastAPI() |
|
|
10 |
# Define a list of allowed origins (modify as needed) |
|
|
11 |
origins = [ |
|
|
12 |
"http://localhost", |
|
|
13 |
"http://localhost:3000", |
|
|
14 |
] |
|
|
15 |
|
|
|
16 |
# Add CORS middleware to allow cross-origin requests |
|
|
17 |
app.add_middleware( |
|
|
18 |
CORSMiddleware, |
|
|
19 |
allow_origins=origins, |
|
|
20 |
allow_credentials=True, |
|
|
21 |
allow_methods=["*"], |
|
|
22 |
allow_headers=["*"], |
|
|
23 |
) |
|
|
24 |
|
|
|
25 |
MODEL = tf.keras.models.load_model("../models/1") |
|
|
26 |
CLASS_NAMES = ['Benign', '[Malignant] Pre-B', |
|
|
27 |
'[Malignant] Pro-B', '[Malignant] early Pre-B'] |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
@app.get("/ping") |
|
|
31 |
async def ping(): |
|
|
32 |
return "Hello, I am alive" |
|
|
33 |
|
|
|
34 |
|
|
|
35 |
def read_file_as_image(data) -> np.ndarray: |
|
|
36 |
image = np.array(Image.open(BytesIO(data))) |
|
|
37 |
return image |
|
|
38 |
|
|
|
39 |
|
|
|
40 |
@app.post("/predict") |
|
|
41 |
async def predict( |
|
|
42 |
file: UploadFile = File(...) |
|
|
43 |
): |
|
|
44 |
image = read_file_as_image(await file.read()) |
|
|
45 |
image = tf.image.resize(image, (264, 264)) |
|
|
46 |
img_batch = np.expand_dims(image, 0) |
|
|
47 |
|
|
|
48 |
predictions = MODEL.predict(img_batch) |
|
|
49 |
predicted_class = CLASS_NAMES[np.argmax(predictions[0])] |
|
|
50 |
confidence = np.max(predictions[0]) |
|
|
51 |
return { |
|
|
52 |
'class': predicted_class, |
|
|
53 |
'confidence': float(confidence) |
|
|
54 |
} |
|
|
55 |
if __name__ == "__main__": |
|
|
56 |
uvicorn.run(app, host='localhost', port=8000) |