[70ba26]: / api / main.py

Download this file

57 lines (46 with data), 1.4 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from fastapi import FastAPI, File, UploadFile
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import numpy as np
from io import BytesIO
from PIL import Image
import tensorflow as tf
app = FastAPI()
# Define a list of allowed origins (modify as needed)
origins = [
"http://localhost",
"http://localhost:3000",
]
# Add CORS middleware to allow cross-origin requests
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
MODEL = tf.keras.models.load_model("../models/1")
CLASS_NAMES = ['Benign', '[Malignant] Pre-B',
'[Malignant] Pro-B', '[Malignant] early Pre-B']
@app.get("/ping")
async def ping():
return "Hello, I am alive"
def read_file_as_image(data) -> np.ndarray:
image = np.array(Image.open(BytesIO(data)))
return image
@app.post("/predict")
async def predict(
file: UploadFile = File(...)
):
image = read_file_as_image(await file.read())
image = tf.image.resize(image, (264, 264))
img_batch = np.expand_dims(image, 0)
predictions = MODEL.predict(img_batch)
predicted_class = CLASS_NAMES[np.argmax(predictions[0])]
confidence = np.max(predictions[0])
return {
'class': predicted_class,
'confidence': float(confidence)
}
if __name__ == "__main__":
uvicorn.run(app, host='localhost', port=8000)