|
a |
|
b/Statistical_analysis_Szabo_TCell_analysis.R |
|
|
1 |
GIT_HOME="/research/users/ppolonen/git_home/ImmunogenomicLandscape-BloodCancers/" |
|
|
2 |
source(file.path(GIT_HOME, "common_scripts/scRNA/functions.scRNA.analysis.R")) |
|
|
3 |
source(file.path(GIT_HOME, "common_scripts/visualisation/plotting_functions.R")) |
|
|
4 |
|
|
|
5 |
library(Matrix) |
|
|
6 |
library(Seurat) |
|
|
7 |
library(data.table) |
|
|
8 |
library(ComplexHeatmap) |
|
|
9 |
library(circlize) |
|
|
10 |
library(parallel) |
|
|
11 |
library(ggplot2) |
|
|
12 |
|
|
|
13 |
setwd("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/Published_data_figures") |
|
|
14 |
|
|
|
15 |
#****************************** plot Szabo scores and immunoscores, singleR etc ****************************** |
|
|
16 |
|
|
|
17 |
a=fread("Szabo_Tcell_markers.txt", data.table = F) |
|
|
18 |
rownames(a)=make.unique(a[,1]) |
|
|
19 |
dat=data.matrix(a[,-1]) |
|
|
20 |
dat[is.na(dat)]=0 |
|
|
21 |
# plot markers in |
|
|
22 |
|
|
|
23 |
# compare NK cells |
|
|
24 |
geneset=data.frame("genes"=a[,1], "name"=NA, stringsAsFactors = F) |
|
|
25 |
geneset$name[1:70]="Treg" |
|
|
26 |
geneset$name[71:140]="CD4 Tn / Tcm resting" |
|
|
27 |
geneset$name[141:210]="CD4 / CD8 resting" |
|
|
28 |
geneset$name[211:280]="IFN response" |
|
|
29 |
geneset$name[281:350]="Proliferation" |
|
|
30 |
geneset$name[351:420]="CD8 Cytotoxic" |
|
|
31 |
geneset$name[421:490]="CD8 Cytokine" |
|
|
32 |
|
|
|
33 |
geneset2=data.frame("genes"=a[,1], "name"=NA, stringsAsFactors = F) |
|
|
34 |
geneset2$name[1:70]="Resting" |
|
|
35 |
geneset2$name[71:140]="Resting" |
|
|
36 |
geneset2$name[141:210]="Resting" |
|
|
37 |
geneset2$name[211:280]="Activated" |
|
|
38 |
geneset2$name[281:350]="Activated" |
|
|
39 |
geneset2$name[351:420]="Activated" |
|
|
40 |
geneset2$name[421:490]="Activated" |
|
|
41 |
|
|
|
42 |
geneset.l=lapply(unique(geneset[,2]), function(g)geneset[geneset[,2]%in%g,1]) |
|
|
43 |
names(geneset.l)=unique(geneset[,2]) |
|
|
44 |
|
|
|
45 |
geneset.l2=lapply(unique(geneset2[,2]), function(g)geneset2[geneset2[,2]%in%g,1]) |
|
|
46 |
names(geneset.l2)=unique(geneset2[,2]) |
|
|
47 |
|
|
|
48 |
geneset.exhaustion=c("PDCD1", "CTLA4", "LAYN", "LAG3", "HAVCR2", "CD244", "CD160") |
|
|
49 |
geneset.cytokine=c("CCL3", "CCL4", "XCL1", "XCL2", "IFNG", "CSF2", "IL10","TNFRSF9") |
|
|
50 |
geneset.cytotoxic=c("CCL5", "GZMK", "GNLY", "EOMES", "ZEB2", "ZNF683", "KLRG1", "NKG7") |
|
|
51 |
|
|
|
52 |
geneset.l3=list("Exhaustion"=geneset.exhaustion, "Cytokine"=geneset.cytokine, "Cytotoxic"=geneset.cytotoxic) |
|
|
53 |
|
|
|
54 |
# add gm based score: |
|
|
55 |
add.scores=list(HLAIScore=c("B2M", "HLA-A", "HLA-B","HLA-C"), HLAIIScore=c("HLA-DMA","HLA-DMB","HLA-DPA1","HLA-DPB1","HLA-DRA","HLA-DRB1"), CytolyticScore=c("GZMA", "PRF1", "GNLY", "GZMH", "GZMM")) |
|
|
56 |
add.scores=append(append(geneset.l, append(geneset.l2, add.scores)), geneset.l3) |
|
|
57 |
|
|
|
58 |
|
|
|
59 |
|
|
|
60 |
load("Szabo_Tcell_BM_scRNA.Rdata") |
|
|
61 |
szabo=scmat |
|
|
62 |
szabo <- NormalizeData(szabo, assay = "RNA", normalization.method = "LogNormalize", scale.factor = 10000) |
|
|
63 |
fm.szabo <- data.matrix(GetAssayData(szabo, assay = "RNA", slot="data")) |
|
|
64 |
|
|
|
65 |
# same in FIMM data: |
|
|
66 |
load("FIMM_AML_HCA_T_scRNA.Rdata") |
|
|
67 |
|
|
|
68 |
scmat=FindClusters(scmat, resolution = 0.5) |
|
|
69 |
|
|
|
70 |
# make sure that using logNormalized data and scaled to 10000: |
|
|
71 |
scmat <- NormalizeData(scmat, assay = "RNA", normalization.method = "LogNormalize", scale.factor = 10000) |
|
|
72 |
fm.f <- data.matrix(GetAssayData(scmat, assay = "RNA", slot="data")) |
|
|
73 |
|
|
|
74 |
sample=gsub("_.*.", "", colnames(scmat)) |
|
|
75 |
sample[grepl("Manton", sample)]="HCA BM" |
|
|
76 |
sample[!grepl("3667|5249|5897", sample)&!grepl("HCA", sample)]="AML other" |
|
|
77 |
scmat[["sample"]]=sample |
|
|
78 |
|
|
|
79 |
# take cluster assignment for AML cells: |
|
|
80 |
scmat2=FindNeighbors(scmat[,grepl("3667|5897|5249", sample)], dims = 1:25, reduction = "mnnCorrect") |
|
|
81 |
scmat2=FindClusters(scmat2, resolution = 0.5, algorithm = 1) |
|
|
82 |
|
|
|
83 |
AML_cluster_Tcell=Idents(scmat2) |
|
|
84 |
save(AML_cluster_Tcell, file="Szabo_HCA_AML_cluster_cell.Rdata") |
|
|
85 |
|
|
|
86 |
pdf("Figure_S3M_FIMM_AML_reclustered_Tcell.pdf", width = 6, height = 5) |
|
|
87 |
DimPlot(scmat, pt.size = 0.1, cells.highlight = colnames(scmat2)[Idents(scmat2)%in%0], cols.highlight = "#006f00") # cytotoxic |
|
|
88 |
DimPlot(scmat, pt.size = 0.1, cells.highlight = colnames(scmat2)[Idents(scmat2)%in%3], cols.highlight = "#006f00") # Cytokine |
|
|
89 |
DimPlot(scmat2, label = T) # all clusters |
|
|
90 |
dev.off() |
|
|
91 |
|
|
|
92 |
geneset.l=lapply(unique(geneset[,2]), function(g){ |
|
|
93 |
genes=geneset[geneset[,2]%in%g,1] |
|
|
94 |
|
|
|
95 |
#take only significant: |
|
|
96 |
genes=genes[genes%in%markers.all$gene[grepl("CD|Treg", markers.all$cluster)]] |
|
|
97 |
}) |
|
|
98 |
names(geneset.l)=paste(unique(geneset[,2]), "filtered") |
|
|
99 |
|
|
|
100 |
# add.scores=append(add.scores, geneset.l) |
|
|
101 |
|
|
|
102 |
# add gm based score: |
|
|
103 |
gm.objects=do.call(rbind, lapply(seq(add.scores), function(i){ |
|
|
104 |
dat3=fm.f[rownames(fm.f)%in%add.scores[[i]],] |
|
|
105 |
gm=log2(t(apply(dat3, 2, gm_mean))) # done to normalized values |
|
|
106 |
rownames(gm)=names(add.scores)[i] |
|
|
107 |
return(gm) |
|
|
108 |
})) |
|
|
109 |
|
|
|
110 |
# also add to seurat object: |
|
|
111 |
for(i in seq(add.scores)){ |
|
|
112 |
scmat[[names(add.scores)[i]]] <- gm.objects[i,] |
|
|
113 |
} |
|
|
114 |
|
|
|
115 |
# add gm based score: |
|
|
116 |
gm.objects=do.call(rbind, lapply(seq(add.scores), function(i){ |
|
|
117 |
dat3=fm.szabo[rownames(fm.szabo)%in%add.scores[[i]],] |
|
|
118 |
gm=log2(t(apply(dat3, 2, gm_mean))) # done to normalized values |
|
|
119 |
rownames(gm)=names(add.scores)[i] |
|
|
120 |
return(gm) |
|
|
121 |
})) |
|
|
122 |
|
|
|
123 |
# also add to seurat object: |
|
|
124 |
for(i in seq(add.scores)){ |
|
|
125 |
szabo[[names(add.scores)[i]]] <- gm.objects[i,] |
|
|
126 |
} |
|
|
127 |
|
|
|
128 |
# pdf("FigureS3M_Szabo_markers_FIMM_AML_HCA_Tcells_Scores.pdf", width=16, height=10) |
|
|
129 |
# FeaturePlot(scmat, features = names(add.scores), cols=c("grey75", "red"), min.cutoff = 0.1) |
|
|
130 |
# FeaturePlot(szabo, features = names(add.scores), cols=c("grey75", "red"), min.cutoff = 0.1) |
|
|
131 |
# dev.off() |
|
|
132 |
|
|
|
133 |
pdf("Figure3M_Szabo_markers_FIMM_AML_HCA_Tcells_Scores_scaled.pdf", width=16, height=14) |
|
|
134 |
p1=FeaturePlot(scmat, features = names(add.scores), combine = F, min.cutoff = 0.2, max.cutoff = 1) |
|
|
135 |
fix.sc <- scale_color_gradientn( colours = c('grey75', 'red'), limits = c(0.2, 1)) |
|
|
136 |
p2 <- lapply(p1, function (x) x + fix.sc) |
|
|
137 |
CombinePlots(p2) |
|
|
138 |
|
|
|
139 |
p1=FeaturePlot(szabo, features = names(add.scores), combine = F, min.cutoff = 0.2, max.cutoff = 1) |
|
|
140 |
fix.sc <- scale_color_gradientn( colours = c('grey75', 'red'), limits = c(0.2, 1)) |
|
|
141 |
p2 <- lapply(p1, function (x) x + fix.sc) |
|
|
142 |
CombinePlots(p2) |
|
|
143 |
dev.off() |
|
|
144 |
|
|
|
145 |
pdf("Figure3I_FigureS3M_Szabo_markers_FIMM_AML_HCA_Tcells_Scores_blend.pdf", width=20, height=5) |
|
|
146 |
FeaturePlot(scmat, features = names(add.scores)[c(14,15)], blend.threshold = 0, blend = T,cols = c("grey74", "darkblue", "red")) |
|
|
147 |
FeaturePlot(scmat, features = names(add.scores)[c(8,9)], blend = T, blend.threshold = 0.6, cols = c("grey74", "darkblue", "red")) |
|
|
148 |
dev.off() |
|
|
149 |
|
|
|
150 |
colors.group=data.table::fread("colors_lineage.txt", data.table = F, header = F) |
|
|
151 |
colors.group=colors.group[grepl("CD|Treg", colors.group$V1),] |
|
|
152 |
plot.multi.scatter.scRNA(data.frame("Sample"="T cells HCA AML", "Data"="FIMM_AML_HCA_T_scRNA.Rdata", "Clusters"="", "Type"="", stringsAsFactors = F), colors.group = colors.group, seurat.feature = "SingleR.label", name="FigureS3M_singleR", cores=9, SIZE = 0.1, rasterize=F, width = 77*4, height = 74*4, text.size = 10*4) |
|
|
153 |
|
|
|
154 |
# plot MDS-like samples to map: |
|
|
155 |
scmat[["MDSlike"]]=ifelse(grepl("5897|3667|5249", scmat[["batch"]][,1]), "MDS-like", "other") |
|
|
156 |
scmat[["MDSlike"]][grepl("BM", scmat[["batch"]][,1]),1]="normal BM" |
|
|
157 |
|
|
|
158 |
lv = scmat[["MDSlike"]][,1]%in%c("MDS-like", "other") |
|
|
159 |
# plot.scatter.seurat(scmat = scmat, colors.group = data.frame("V1"=c("normal BM", "other", "MDS-like"), "V2"=c("grey75", "orange", "#21a366"), stringsAsFactors = F), seurat.feature = "MDSlike", name="T cells (AML, HCA)",lv = lv, cores=1, add.density = T, add.proportions = T, SIZE = 1, rasterize=F, width = 64*4, height = 74*4, text.size=10*4) |
|
|
160 |
|
|
|
161 |
xy=data.frame(Embeddings(scmat, "umap")) |
|
|
162 |
|
|
|
163 |
pdf("Figure3I_Density_MDSlike_Tcell.pdf", width = 5, height = 4) |
|
|
164 |
ggplot(xy[lv,], aes(x=UMAP_1, y=UMAP_2) ) + |
|
|
165 |
stat_density2d(aes(fill = ..density..), contour = F, geom = 'tile') + |
|
|
166 |
viridis::scale_fill_viridis() |
|
|
167 |
ggplot(xy[scmat[["MDSlike"]]=="normal BM",], aes(x=UMAP_1, y=UMAP_2) ) + |
|
|
168 |
stat_density2d(aes(fill = ..density..), contour = F, geom = 'tile') + |
|
|
169 |
viridis::scale_fill_viridis() |
|
|
170 |
dev.off() |