[8e0848]: / Statistical_analysis_Szabo_TCell_analysis.R

Download this file

170 lines (133 with data), 7.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
GIT_HOME="/research/users/ppolonen/git_home/ImmunogenomicLandscape-BloodCancers/"
source(file.path(GIT_HOME, "common_scripts/scRNA/functions.scRNA.analysis.R"))
source(file.path(GIT_HOME, "common_scripts/visualisation/plotting_functions.R"))
library(Matrix)
library(Seurat)
library(data.table)
library(ComplexHeatmap)
library(circlize)
library(parallel)
library(ggplot2)
setwd("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/Published_data_figures")
#****************************** plot Szabo scores and immunoscores, singleR etc ******************************
a=fread("Szabo_Tcell_markers.txt", data.table = F)
rownames(a)=make.unique(a[,1])
dat=data.matrix(a[,-1])
dat[is.na(dat)]=0
# plot markers in
# compare NK cells
geneset=data.frame("genes"=a[,1], "name"=NA, stringsAsFactors = F)
geneset$name[1:70]="Treg"
geneset$name[71:140]="CD4 Tn / Tcm resting"
geneset$name[141:210]="CD4 / CD8 resting"
geneset$name[211:280]="IFN response"
geneset$name[281:350]="Proliferation"
geneset$name[351:420]="CD8 Cytotoxic"
geneset$name[421:490]="CD8 Cytokine"
geneset2=data.frame("genes"=a[,1], "name"=NA, stringsAsFactors = F)
geneset2$name[1:70]="Resting"
geneset2$name[71:140]="Resting"
geneset2$name[141:210]="Resting"
geneset2$name[211:280]="Activated"
geneset2$name[281:350]="Activated"
geneset2$name[351:420]="Activated"
geneset2$name[421:490]="Activated"
geneset.l=lapply(unique(geneset[,2]), function(g)geneset[geneset[,2]%in%g,1])
names(geneset.l)=unique(geneset[,2])
geneset.l2=lapply(unique(geneset2[,2]), function(g)geneset2[geneset2[,2]%in%g,1])
names(geneset.l2)=unique(geneset2[,2])
geneset.exhaustion=c("PDCD1", "CTLA4", "LAYN", "LAG3", "HAVCR2", "CD244", "CD160")
geneset.cytokine=c("CCL3", "CCL4", "XCL1", "XCL2", "IFNG", "CSF2", "IL10","TNFRSF9")
geneset.cytotoxic=c("CCL5", "GZMK", "GNLY", "EOMES", "ZEB2", "ZNF683", "KLRG1", "NKG7")
geneset.l3=list("Exhaustion"=geneset.exhaustion, "Cytokine"=geneset.cytokine, "Cytotoxic"=geneset.cytotoxic)
# add gm based score:
add.scores=list(HLAIScore=c("B2M", "HLA-A", "HLA-B","HLA-C"), HLAIIScore=c("HLA-DMA","HLA-DMB","HLA-DPA1","HLA-DPB1","HLA-DRA","HLA-DRB1"), CytolyticScore=c("GZMA", "PRF1", "GNLY", "GZMH", "GZMM"))
add.scores=append(append(geneset.l, append(geneset.l2, add.scores)), geneset.l3)
load("Szabo_Tcell_BM_scRNA.Rdata")
szabo=scmat
szabo <- NormalizeData(szabo, assay = "RNA", normalization.method = "LogNormalize", scale.factor = 10000)
fm.szabo <- data.matrix(GetAssayData(szabo, assay = "RNA", slot="data"))
# same in FIMM data:
load("FIMM_AML_HCA_T_scRNA.Rdata")
scmat=FindClusters(scmat, resolution = 0.5)
# make sure that using logNormalized data and scaled to 10000:
scmat <- NormalizeData(scmat, assay = "RNA", normalization.method = "LogNormalize", scale.factor = 10000)
fm.f <- data.matrix(GetAssayData(scmat, assay = "RNA", slot="data"))
sample=gsub("_.*.", "", colnames(scmat))
sample[grepl("Manton", sample)]="HCA BM"
sample[!grepl("3667|5249|5897", sample)&!grepl("HCA", sample)]="AML other"
scmat[["sample"]]=sample
# take cluster assignment for AML cells:
scmat2=FindNeighbors(scmat[,grepl("3667|5897|5249", sample)], dims = 1:25, reduction = "mnnCorrect")
scmat2=FindClusters(scmat2, resolution = 0.5, algorithm = 1)
AML_cluster_Tcell=Idents(scmat2)
save(AML_cluster_Tcell, file="Szabo_HCA_AML_cluster_cell.Rdata")
pdf("Figure_S3M_FIMM_AML_reclustered_Tcell.pdf", width = 6, height = 5)
DimPlot(scmat, pt.size = 0.1, cells.highlight = colnames(scmat2)[Idents(scmat2)%in%0], cols.highlight = "#006f00") # cytotoxic
DimPlot(scmat, pt.size = 0.1, cells.highlight = colnames(scmat2)[Idents(scmat2)%in%3], cols.highlight = "#006f00") # Cytokine
DimPlot(scmat2, label = T) # all clusters
dev.off()
geneset.l=lapply(unique(geneset[,2]), function(g){
genes=geneset[geneset[,2]%in%g,1]
#take only significant:
genes=genes[genes%in%markers.all$gene[grepl("CD|Treg", markers.all$cluster)]]
})
names(geneset.l)=paste(unique(geneset[,2]), "filtered")
# add.scores=append(add.scores, geneset.l)
# add gm based score:
gm.objects=do.call(rbind, lapply(seq(add.scores), function(i){
dat3=fm.f[rownames(fm.f)%in%add.scores[[i]],]
gm=log2(t(apply(dat3, 2, gm_mean))) # done to normalized values
rownames(gm)=names(add.scores)[i]
return(gm)
}))
# also add to seurat object:
for(i in seq(add.scores)){
scmat[[names(add.scores)[i]]] <- gm.objects[i,]
}
# add gm based score:
gm.objects=do.call(rbind, lapply(seq(add.scores), function(i){
dat3=fm.szabo[rownames(fm.szabo)%in%add.scores[[i]],]
gm=log2(t(apply(dat3, 2, gm_mean))) # done to normalized values
rownames(gm)=names(add.scores)[i]
return(gm)
}))
# also add to seurat object:
for(i in seq(add.scores)){
szabo[[names(add.scores)[i]]] <- gm.objects[i,]
}
# pdf("FigureS3M_Szabo_markers_FIMM_AML_HCA_Tcells_Scores.pdf", width=16, height=10)
# FeaturePlot(scmat, features = names(add.scores), cols=c("grey75", "red"), min.cutoff = 0.1)
# FeaturePlot(szabo, features = names(add.scores), cols=c("grey75", "red"), min.cutoff = 0.1)
# dev.off()
pdf("Figure3M_Szabo_markers_FIMM_AML_HCA_Tcells_Scores_scaled.pdf", width=16, height=14)
p1=FeaturePlot(scmat, features = names(add.scores), combine = F, min.cutoff = 0.2, max.cutoff = 1)
fix.sc <- scale_color_gradientn( colours = c('grey75', 'red'), limits = c(0.2, 1))
p2 <- lapply(p1, function (x) x + fix.sc)
CombinePlots(p2)
p1=FeaturePlot(szabo, features = names(add.scores), combine = F, min.cutoff = 0.2, max.cutoff = 1)
fix.sc <- scale_color_gradientn( colours = c('grey75', 'red'), limits = c(0.2, 1))
p2 <- lapply(p1, function (x) x + fix.sc)
CombinePlots(p2)
dev.off()
pdf("Figure3I_FigureS3M_Szabo_markers_FIMM_AML_HCA_Tcells_Scores_blend.pdf", width=20, height=5)
FeaturePlot(scmat, features = names(add.scores)[c(14,15)], blend.threshold = 0, blend = T,cols = c("grey74", "darkblue", "red"))
FeaturePlot(scmat, features = names(add.scores)[c(8,9)], blend = T, blend.threshold = 0.6, cols = c("grey74", "darkblue", "red"))
dev.off()
colors.group=data.table::fread("colors_lineage.txt", data.table = F, header = F)
colors.group=colors.group[grepl("CD|Treg", colors.group$V1),]
plot.multi.scatter.scRNA(data.frame("Sample"="T cells HCA AML", "Data"="FIMM_AML_HCA_T_scRNA.Rdata", "Clusters"="", "Type"="", stringsAsFactors = F), colors.group = colors.group, seurat.feature = "SingleR.label", name="FigureS3M_singleR", cores=9, SIZE = 0.1, rasterize=F, width = 77*4, height = 74*4, text.size = 10*4)
# plot MDS-like samples to map:
scmat[["MDSlike"]]=ifelse(grepl("5897|3667|5249", scmat[["batch"]][,1]), "MDS-like", "other")
scmat[["MDSlike"]][grepl("BM", scmat[["batch"]][,1]),1]="normal BM"
lv = scmat[["MDSlike"]][,1]%in%c("MDS-like", "other")
# plot.scatter.seurat(scmat = scmat, colors.group = data.frame("V1"=c("normal BM", "other", "MDS-like"), "V2"=c("grey75", "orange", "#21a366"), stringsAsFactors = F), seurat.feature = "MDSlike", name="T cells (AML, HCA)",lv = lv, cores=1, add.density = T, add.proportions = T, SIZE = 1, rasterize=F, width = 64*4, height = 74*4, text.size=10*4)
xy=data.frame(Embeddings(scmat, "umap"))
pdf("Figure3I_Density_MDSlike_Tcell.pdf", width = 5, height = 4)
ggplot(xy[lv,], aes(x=UMAP_1, y=UMAP_2) ) +
stat_density2d(aes(fill = ..density..), contour = F, geom = 'tile') +
viridis::scale_fill_viridis()
ggplot(xy[scmat[["MDSlike"]]=="normal BM",], aes(x=UMAP_1, y=UMAP_2) ) +
stat_density2d(aes(fill = ..density..), contour = F, geom = 'tile') +
viridis::scale_fill_viridis()
dev.off()