|
a |
|
b/Fig3_FigS3_MDSsignature.R |
|
|
1 |
GIT_HOME="/research/users/ppolonen/git_home/ImmunogenomicLandscape-BloodCancers/" |
|
|
2 |
source(file.path(GIT_HOME, "common_scripts/visualisation/plotting_functions.R")) |
|
|
3 |
source(file.path(GIT_HOME, "common_scripts/statistics/functions_statistics.R")) |
|
|
4 |
source(file.path(GIT_HOME, "common_scripts/statistics/statistics_wrappers.R")) |
|
|
5 |
source(file.path(GIT_HOME, "common_scripts/pathway_analysis/functions.GSEA.R")) |
|
|
6 |
source(file.path(GIT_HOME, "common_scripts/scRNA/functions.scRNA.analysis.R")) |
|
|
7 |
source(file.path(GIT_HOME, "common_scripts/statistics/useful_functions.R")) |
|
|
8 |
|
|
|
9 |
# cancermap coordinates: |
|
|
10 |
library(reshape2) |
|
|
11 |
library(gridExtra) |
|
|
12 |
library(GSVA) |
|
|
13 |
library(RColorBrewer) |
|
|
14 |
library(ggplot2) |
|
|
15 |
library(Rtsne) |
|
|
16 |
library(LPCM) |
|
|
17 |
|
|
|
18 |
# plotting function |
|
|
19 |
Plot_GSVA_scores=function(feat, data_plot, VALUE, SIZE, CLUSTER_CENTRE, coord, peaks){ |
|
|
20 |
|
|
|
21 |
# Find specified feature(feat) from data_plot |
|
|
22 |
data=data_plot[rownames(data_plot)%in%feat,] |
|
|
23 |
|
|
|
24 |
# Transform matrix to numeric. |
|
|
25 |
data=as.numeric(data) |
|
|
26 |
|
|
|
27 |
# Color vector for gradient colors from blue to red. |
|
|
28 |
rbPal <- colorRampPalette(c('blue','red')) |
|
|
29 |
|
|
|
30 |
# Adjust data for gradient colors. |
|
|
31 |
data=c(data, 2, -2) # adjust range |
|
|
32 |
datCol <- rbPal(10)[as.numeric(cut(data,breaks = 10))] |
|
|
33 |
datCol=datCol[-c(length(datCol)-1, length(datCol))] |
|
|
34 |
data=data[-c(length(data)-1, length(data))] |
|
|
35 |
|
|
|
36 |
# Samples below cutoff colored grey. |
|
|
37 |
datCol[abs(data)<VALUE]="grey75" |
|
|
38 |
front=abs(data)>VALUE |
|
|
39 |
|
|
|
40 |
# Prepare coordinate data for plotting. |
|
|
41 |
dat2show <- cbind(coord$x, coord$y) |
|
|
42 |
df=as.data.frame(dat2show) |
|
|
43 |
colnames(df) = c("X1","X2") |
|
|
44 |
|
|
|
45 |
# Generate plot title. |
|
|
46 |
cutoff=paste("GSVA score >", VALUE) |
|
|
47 |
plotname=paste(feat, cutoff, sep="\n") |
|
|
48 |
|
|
|
49 |
# Call actual plotting function. |
|
|
50 |
drawFig(df, CLUSTER_CENTRE, datCol, front, plotname, SIZE, peaks) |
|
|
51 |
} |
|
|
52 |
|
|
|
53 |
load("MDS_genesets.Rdata") |
|
|
54 |
geneset=list("MDS_signature"=geneset$MDS_signature_all_filt) |
|
|
55 |
|
|
|
56 |
# go through each cohort and plot GSVA score: |
|
|
57 |
setwd("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/Published_data_figures") |
|
|
58 |
|
|
|
59 |
files=list.files(path = ".", "subtypes.Rdata") |
|
|
60 |
names(files)=gsub("_subtypes.Rdata", "", files) |
|
|
61 |
|
|
|
62 |
files=files[grepl("AML", names(files))] |
|
|
63 |
|
|
|
64 |
p.all=lapply(files, function(f){ |
|
|
65 |
load(f) |
|
|
66 |
|
|
|
67 |
score=gsva(data.matrix(gexp), geneset, mx.diff=F, tau=0.25, parallel.sz=4) |
|
|
68 |
|
|
|
69 |
plot.val=t(scale(t(score))) |
|
|
70 |
|
|
|
71 |
a=Plot_GSVA_scores(feat = "MDS_signature", data_plot = t(scale(t(score))), VALUE = 0.5,SIZE = 1, coord = coordinates.subtype, peaks = NULL, CLUSTER_CENTRE = F) |
|
|
72 |
|
|
|
73 |
}) |
|
|
74 |
|
|
|
75 |
# Save PDF figure (A4) with multiple panels |
|
|
76 |
ggsave("Figure3E_FigureS3D.pdf", do.call(marrangeGrob, list(grobs=p.all, nrow=4, ncol=3)), width = 210, height = 297, units = "mm", dpi=150) |