[8e0848]: / Fig3_FigS3_MDSsignature.R

Download this file

77 lines (56 with data), 2.7 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
GIT_HOME="/research/users/ppolonen/git_home/ImmunogenomicLandscape-BloodCancers/"
source(file.path(GIT_HOME, "common_scripts/visualisation/plotting_functions.R"))
source(file.path(GIT_HOME, "common_scripts/statistics/functions_statistics.R"))
source(file.path(GIT_HOME, "common_scripts/statistics/statistics_wrappers.R"))
source(file.path(GIT_HOME, "common_scripts/pathway_analysis/functions.GSEA.R"))
source(file.path(GIT_HOME, "common_scripts/scRNA/functions.scRNA.analysis.R"))
source(file.path(GIT_HOME, "common_scripts/statistics/useful_functions.R"))
# cancermap coordinates:
library(reshape2)
library(gridExtra)
library(GSVA)
library(RColorBrewer)
library(ggplot2)
library(Rtsne)
library(LPCM)
# plotting function
Plot_GSVA_scores=function(feat, data_plot, VALUE, SIZE, CLUSTER_CENTRE, coord, peaks){
# Find specified feature(feat) from data_plot
data=data_plot[rownames(data_plot)%in%feat,]
# Transform matrix to numeric.
data=as.numeric(data)
# Color vector for gradient colors from blue to red.
rbPal <- colorRampPalette(c('blue','red'))
# Adjust data for gradient colors.
data=c(data, 2, -2) # adjust range
datCol <- rbPal(10)[as.numeric(cut(data,breaks = 10))]
datCol=datCol[-c(length(datCol)-1, length(datCol))]
data=data[-c(length(data)-1, length(data))]
# Samples below cutoff colored grey.
datCol[abs(data)<VALUE]="grey75"
front=abs(data)>VALUE
# Prepare coordinate data for plotting.
dat2show <- cbind(coord$x, coord$y)
df=as.data.frame(dat2show)
colnames(df) = c("X1","X2")
# Generate plot title.
cutoff=paste("GSVA score >", VALUE)
plotname=paste(feat, cutoff, sep="\n")
# Call actual plotting function.
drawFig(df, CLUSTER_CENTRE, datCol, front, plotname, SIZE, peaks)
}
load("MDS_genesets.Rdata")
geneset=list("MDS_signature"=geneset$MDS_signature_all_filt)
# go through each cohort and plot GSVA score:
setwd("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/Published_data_figures")
files=list.files(path = ".", "subtypes.Rdata")
names(files)=gsub("_subtypes.Rdata", "", files)
files=files[grepl("AML", names(files))]
p.all=lapply(files, function(f){
load(f)
score=gsva(data.matrix(gexp), geneset, mx.diff=F, tau=0.25, parallel.sz=4)
plot.val=t(scale(t(score)))
a=Plot_GSVA_scores(feat = "MDS_signature", data_plot = t(scale(t(score))), VALUE = 0.5,SIZE = 1, coord = coordinates.subtype, peaks = NULL, CLUSTER_CENTRE = F)
})
# Save PDF figure (A4) with multiple panels
ggsave("Figure3E_FigureS3D.pdf", do.call(marrangeGrob, list(grobs=p.all, nrow=4, ncol=3)), width = 210, height = 297, units = "mm", dpi=150)