--- a +++ b/Analysis_2.R @@ -0,0 +1,127 @@ +library(openxlsx) +library(plyr) +library(dplyr) + +pt = read.xlsx("MEGA PT Data for Lu%2c August 21%2c 2017.xlsx", sheet = 1) +pt$mutID = paste(pt$Chrom, pt$Position,pt$BaseFrom,pt$BaseTo) +pt$Matched.Plasma = as.character(pt$Matched.Plasma) + + +cancer = c("CRC","Lung","Breast","Pancreas","Ovarian","Esophagus","Liver","Stomach","Small Intestine","Gastric","Ovary","pancreas") + +uidThr=200 +## threshold for omega value +thres = 1.9 + +final_cv = data.frame() +fp_cv = data.frame() + +for(m in 1:10){ + allResults = c() + cv = matrix(0, nrow = 10, ncol = 3) + colnames(cv) = c("FP","Sens", "Con") + + for(c in 1:10){ + + load(paste0("PvalueRatio1209cv_5perc_bl_",m,"_", c,"_1208data.rda")) + + result$fail = (result$UID1<uidThr)+(result$UID2<uidThr)+(result$UID3<uidThr)+ + (result$UID4<uidThr)+(result$UID5<uidThr)+(result$UID6<uidThr) + result = result[result$fail<=2,] + + ## difference between average MAF in the test and the max MAF in the normal controls + result$diff = result$aveMAF-result$max + result$diff_r = (result$aveMAF-result$max)/(result$max+10e-6) + result$PT.Avg.MAF[is.na(result$PT.Avg.MAF)] = -1 + result$PT.Avg.MAF = as.numeric(result$PT.Avg.MAF) + + ratio = matrix(c(result$r1, result$r2,result$r3,result$r4, result$r5,result$r6), nrow = nrow(result), ncol = 6) + uid = matrix(c(result$UID1,result$UID2, result$UID3,result$UID4,result$UID5,result$UID6), nrow = nrow(result), ncol = 6) + + order.ratio = t(apply(ratio, 1, order)) + + for(i in 1:nrow(ratio)){ + ratio[i,] = ratio[i,][order.ratio[i,]] + uid[i,] = uid[i,][order.ratio[i,]] + } + + uid[uid<uidThr] = 0 + + ## eliminate the min and max wells in the testSet + result$omega = rowSums(log(ratio[,-c(1,6)])*uid[,-c(1,6)])/rowSums(uid[,-c(1,6)]) + + result$omega[is.na(result$omega)] = Inf + result$class = FALSE + result$class = (result$omega>=thres) + result$iteration = m + result$fold = c + ## normal plasmas in the testSet + nltemp = setdiff(nlpls,nlt) + + ## summarizing results + summ = ddply(result, .(Template,Sample.Category), summarise, PT = max(PT.Avg.MAF*class), class = max(class)) + + cv[c,1] = sum(summ$class[summ$Template %in% nltemp])/length(nltemp) + cv[c,2] = sum(summ$class[summ$Sample.Category %in% cancer])/nrow(summ[summ$Sample.Category %in% cancer,]) + + check = summ[summ$class==TRUE & (summ$Sample.Category %in% cancer) & (summ$Template %in% pt$Matched.Plasma),] + cv[c,3] = sum(check$PT>=1)/sum(check$PT>=0) + + allResults = rbind(allResults,result) + + } + save(allResults, file = paste0("allResults_fromLuMethod_",m,"_20171209.rda")) + + print(m) + cv = data.frame(cv) + final_cv = rbind.data.frame(final_cv,cv) +} + + + +sampleTable_ALL = data.frame() +for(m in 1:10){ + load(file = paste0("allResults_fromLuMethod_",m,"_20171209.rda")) + + # subset by sample omega values and mutations + sampleOmegaList = tapply(allResults[,'omega'], INDEX = allResults[,'Template'], FUN = function(x)return(x)) + sampleMutList = tapply(allResults[,'mutID'], INDEX = allResults[,'Template'], FUN = function(x)return(x)) + sampleCosmicList = tapply(allResults[,'CosmicCount'], INDEX = allResults[,'Template'], FUN = function(x)return(x)) + sampleGeneList = tapply(allResults[,'Gene'], INDEX = allResults[,'Template'], FUN = function(x)return(x)) + sampleAmpList = tapply(allResults[,"ampMatchName"], INDEX = allResults[,'Template'], FUN = function(x)return(x)) + + # find max value + sampleMaxS = unlist(tapply(allResults[,'omega'], INDEX = allResults[,'Template'], FUN = which.max, simplify = T)) + + maxS = sapply(names(sampleMaxS), function(i) sampleOmegaList[[i]][sampleMaxS[i]]) + maxSmut = sapply(names(sampleMaxS), function(i) sampleMutList[[i]][sampleMaxS[i]]) + cosm = sapply(names(sampleMaxS), function(i) sampleCosmicList[[i]][sampleMaxS[i]]) + gene = sapply(names(sampleMaxS), function(i) sampleGeneList[[i]][sampleMaxS[i]]) + amp = sapply(names(sampleMaxS), function(i) sampleAmpList[[i]][sampleMaxS[i]]) + + + sampleTable = allResults[,c('Template','Sample.Category',"iteration","fold")] + sampleTable = sampleTable[!duplicated(sampleTable[,1]),] + rownames(sampleTable) = sampleTable[,1] + sampleTable = cbind(sampleTable,maxOmega = maxS[rownames(sampleTable)], maxO_mut = maxSmut[rownames(sampleTable)], + CosmicCount = cosm[rownames(sampleTable)], gene = gene[rownames(sampleTable)], ampMatchName = amp[rownames(sampleTable)]) + + sampleTable$remove = paste(sampleTable$Template,sampleTable$maxO_mut) + sampleTable = sampleTable[,-1] + + uid_matrix = allResults[,c(1:51)] + uid_matrix_subset = uid_matrix[match(sampleTable$remove,uid_matrix$remove),] + + sampleTable = cbind(sampleTable,uid_matrix_subset) + + #save(sampleTable, file = 'omegaPerSample_20171019.rda') + + # add maximum diff and diff_r per sample + diff = unlist(tapply(allResults[,'diff'], INDEX = allResults[,'Template'], FUN = max, na.rm = T, simplify = T)) + diff_r = unlist(tapply(allResults[,'diff_r'], INDEX = allResults[,'Template'], FUN = max, na.rm = T, simplify = T)) + sampleTable_diff = cbind(sampleTable,maxDiff = diff[rownames(sampleTable)],maxDiff_r = diff_r[rownames(sampleTable)]) + sampleTable_ALL = rbind.data.frame(sampleTable_ALL, sampleTable_diff) +} +save(sampleTable_ALL, file = 'maxValuesPerSample_20171209_FORJosh.rda') + +