[b8d756]: / Analysis_2.R

Download this file

128 lines (90 with data), 5.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
library(openxlsx)
library(plyr)
library(dplyr)
pt = read.xlsx("MEGA PT Data for Lu%2c August 21%2c 2017.xlsx", sheet = 1)
pt$mutID = paste(pt$Chrom, pt$Position,pt$BaseFrom,pt$BaseTo)
pt$Matched.Plasma = as.character(pt$Matched.Plasma)
cancer = c("CRC","Lung","Breast","Pancreas","Ovarian","Esophagus","Liver","Stomach","Small Intestine","Gastric","Ovary","pancreas")
uidThr=200
## threshold for omega value
thres = 1.9
final_cv = data.frame()
fp_cv = data.frame()
for(m in 1:10){
allResults = c()
cv = matrix(0, nrow = 10, ncol = 3)
colnames(cv) = c("FP","Sens", "Con")
for(c in 1:10){
load(paste0("PvalueRatio1209cv_5perc_bl_",m,"_", c,"_1208data.rda"))
result$fail = (result$UID1<uidThr)+(result$UID2<uidThr)+(result$UID3<uidThr)+
(result$UID4<uidThr)+(result$UID5<uidThr)+(result$UID6<uidThr)
result = result[result$fail<=2,]
## difference between average MAF in the test and the max MAF in the normal controls
result$diff = result$aveMAF-result$max
result$diff_r = (result$aveMAF-result$max)/(result$max+10e-6)
result$PT.Avg.MAF[is.na(result$PT.Avg.MAF)] = -1
result$PT.Avg.MAF = as.numeric(result$PT.Avg.MAF)
ratio = matrix(c(result$r1, result$r2,result$r3,result$r4, result$r5,result$r6), nrow = nrow(result), ncol = 6)
uid = matrix(c(result$UID1,result$UID2, result$UID3,result$UID4,result$UID5,result$UID6), nrow = nrow(result), ncol = 6)
order.ratio = t(apply(ratio, 1, order))
for(i in 1:nrow(ratio)){
ratio[i,] = ratio[i,][order.ratio[i,]]
uid[i,] = uid[i,][order.ratio[i,]]
}
uid[uid<uidThr] = 0
## eliminate the min and max wells in the testSet
result$omega = rowSums(log(ratio[,-c(1,6)])*uid[,-c(1,6)])/rowSums(uid[,-c(1,6)])
result$omega[is.na(result$omega)] = Inf
result$class = FALSE
result$class = (result$omega>=thres)
result$iteration = m
result$fold = c
## normal plasmas in the testSet
nltemp = setdiff(nlpls,nlt)
## summarizing results
summ = ddply(result, .(Template,Sample.Category), summarise, PT = max(PT.Avg.MAF*class), class = max(class))
cv[c,1] = sum(summ$class[summ$Template %in% nltemp])/length(nltemp)
cv[c,2] = sum(summ$class[summ$Sample.Category %in% cancer])/nrow(summ[summ$Sample.Category %in% cancer,])
check = summ[summ$class==TRUE & (summ$Sample.Category %in% cancer) & (summ$Template %in% pt$Matched.Plasma),]
cv[c,3] = sum(check$PT>=1)/sum(check$PT>=0)
allResults = rbind(allResults,result)
}
save(allResults, file = paste0("allResults_fromLuMethod_",m,"_20171209.rda"))
print(m)
cv = data.frame(cv)
final_cv = rbind.data.frame(final_cv,cv)
}
sampleTable_ALL = data.frame()
for(m in 1:10){
load(file = paste0("allResults_fromLuMethod_",m,"_20171209.rda"))
# subset by sample omega values and mutations
sampleOmegaList = tapply(allResults[,'omega'], INDEX = allResults[,'Template'], FUN = function(x)return(x))
sampleMutList = tapply(allResults[,'mutID'], INDEX = allResults[,'Template'], FUN = function(x)return(x))
sampleCosmicList = tapply(allResults[,'CosmicCount'], INDEX = allResults[,'Template'], FUN = function(x)return(x))
sampleGeneList = tapply(allResults[,'Gene'], INDEX = allResults[,'Template'], FUN = function(x)return(x))
sampleAmpList = tapply(allResults[,"ampMatchName"], INDEX = allResults[,'Template'], FUN = function(x)return(x))
# find max value
sampleMaxS = unlist(tapply(allResults[,'omega'], INDEX = allResults[,'Template'], FUN = which.max, simplify = T))
maxS = sapply(names(sampleMaxS), function(i) sampleOmegaList[[i]][sampleMaxS[i]])
maxSmut = sapply(names(sampleMaxS), function(i) sampleMutList[[i]][sampleMaxS[i]])
cosm = sapply(names(sampleMaxS), function(i) sampleCosmicList[[i]][sampleMaxS[i]])
gene = sapply(names(sampleMaxS), function(i) sampleGeneList[[i]][sampleMaxS[i]])
amp = sapply(names(sampleMaxS), function(i) sampleAmpList[[i]][sampleMaxS[i]])
sampleTable = allResults[,c('Template','Sample.Category',"iteration","fold")]
sampleTable = sampleTable[!duplicated(sampleTable[,1]),]
rownames(sampleTable) = sampleTable[,1]
sampleTable = cbind(sampleTable,maxOmega = maxS[rownames(sampleTable)], maxO_mut = maxSmut[rownames(sampleTable)],
CosmicCount = cosm[rownames(sampleTable)], gene = gene[rownames(sampleTable)], ampMatchName = amp[rownames(sampleTable)])
sampleTable$remove = paste(sampleTable$Template,sampleTable$maxO_mut)
sampleTable = sampleTable[,-1]
uid_matrix = allResults[,c(1:51)]
uid_matrix_subset = uid_matrix[match(sampleTable$remove,uid_matrix$remove),]
sampleTable = cbind(sampleTable,uid_matrix_subset)
#save(sampleTable, file = 'omegaPerSample_20171019.rda')
# add maximum diff and diff_r per sample
diff = unlist(tapply(allResults[,'diff'], INDEX = allResults[,'Template'], FUN = max, na.rm = T, simplify = T))
diff_r = unlist(tapply(allResults[,'diff_r'], INDEX = allResults[,'Template'], FUN = max, na.rm = T, simplify = T))
sampleTable_diff = cbind(sampleTable,maxDiff = diff[rownames(sampleTable)],maxDiff_r = diff_r[rownames(sampleTable)])
sampleTable_ALL = rbind.data.frame(sampleTable_ALL, sampleTable_diff)
}
save(sampleTable_ALL, file = 'maxValuesPerSample_20171209_FORJosh.rda')