|
a |
|
b/analysis/NeighborhoodAnalysis.Rmd |
|
|
1 |
--- |
|
|
2 |
title: "Neighborhood analysis" |
|
|
3 |
author: Tobias Roider |
|
|
4 |
date: "Last compiled on `r format(Sys.time(), '%d %B, %Y, %X')`" |
|
|
5 |
output: |
|
|
6 |
|
|
|
7 |
rmdformats::readthedown: |
|
|
8 |
|
|
|
9 |
editor_options: |
|
|
10 |
chunk_output_type: console |
|
|
11 |
--- |
|
|
12 |
|
|
|
13 |
```{r options, include=FALSE, warning = FALSE} |
|
|
14 |
|
|
|
15 |
library(knitr) |
|
|
16 |
opts_chunk$set(echo=TRUE, tidy=FALSE, include=TRUE, message=FALSE, |
|
|
17 |
dpi = 100, cache = FALSE, warning = FALSE) |
|
|
18 |
opts_knit$set(root.dir = "../") |
|
|
19 |
options(bitmapType = "cairo") |
|
|
20 |
|
|
|
21 |
``` |
|
|
22 |
|
|
|
23 |
# Load packages, functions and data |
|
|
24 |
```{r Load packages and functions} |
|
|
25 |
|
|
|
26 |
library(Seurat) |
|
|
27 |
library(tidyverse) |
|
|
28 |
library(readxl) |
|
|
29 |
|
|
|
30 |
source("R/ReadPackages.R") |
|
|
31 |
source("R/Functions.R") |
|
|
32 |
|
|
|
33 |
# Read CODEX data (only meta data) |
|
|
34 |
# Available at BioStudies database (https://www.ebi.ac.uk/biostudies/) under accession number S-BIAD565 |
|
|
35 |
codex_annotation <- data.table::fread("data/cells_annotation.csv") %>% tibble() %>% |
|
|
36 |
filter(Merged_final!="na") |
|
|
37 |
|
|
|
38 |
``` |
|
|
39 |
|
|
|
40 |
# Function |
|
|
41 |
```{r function} |
|
|
42 |
|
|
|
43 |
# Run nearest neighbor analysis |
|
|
44 |
run_NNanalysis <- function(data=NULL, plan_session="sequential", n_workers=1, nn=25, regions=NULL, |
|
|
45 |
add.prop=TRUE){ |
|
|
46 |
|
|
|
47 |
require(future) |
|
|
48 |
require(future.apply) |
|
|
49 |
require(FNN) |
|
|
50 |
|
|
|
51 |
if(plan_session=="sequential"){ |
|
|
52 |
plan(strategy = plan_session) |
|
|
53 |
} |
|
|
54 |
|
|
|
55 |
if(plan_session=="multisession"){ |
|
|
56 |
plan(strategy = plan_session, workers=n_workers) |
|
|
57 |
} |
|
|
58 |
|
|
|
59 |
options(future.globals.maxSize= 8000*1024^2) |
|
|
60 |
|
|
|
61 |
output <- future_lapply(regions, function(r){ |
|
|
62 |
|
|
|
63 |
df <- data %>% |
|
|
64 |
filter(unique_region==r) |
|
|
65 |
|
|
|
66 |
df_nn <- get.knn(select(df,x,y), nn) |
|
|
67 |
|
|
|
68 |
df_nn <- df_nn$nn.index %>% |
|
|
69 |
`rownames<-`(df$unique_cell_id) %>% |
|
|
70 |
data.frame() %>% |
|
|
71 |
rownames_to_column("unique_cell_id") %>% |
|
|
72 |
pivot_longer(cols = 2:ncol(.)) %>% |
|
|
73 |
left_join(., df %>% select(unique_cell_id_nn=unique_cell_id, Merged_final) %>% mutate(value=1:nrow(.)), by="value") %>% |
|
|
74 |
select(-value) |
|
|
75 |
|
|
|
76 |
if(add.prop==TRUE){ |
|
|
77 |
mat <- df_nn %>% |
|
|
78 |
add_prop(vars = c("unique_cell_id", "Merged_final"), group.vars = 1) %>% |
|
|
79 |
pivot_wider(names_from = "Merged_final", values_from = "Prop", values_fill = 0) %>% |
|
|
80 |
column_to_rownames("unique_cell_id") |
|
|
81 |
mat <- mat[names(which(rowSums(mat)>0)), ] |
|
|
82 |
|
|
|
83 |
} else { |
|
|
84 |
mat <- df_nn |
|
|
85 |
} |
|
|
86 |
|
|
|
87 |
return(mat) |
|
|
88 |
}) |
|
|
89 |
plan(strategy = "sequential") |
|
|
90 |
|
|
|
91 |
mat <- do.call(rbind, output) |
|
|
92 |
|
|
|
93 |
return(mat) |
|
|
94 |
} |
|
|
95 |
|
|
|
96 |
``` |
|
|
97 |
|
|
|
98 |
# Run Analysis |
|
|
99 |
```{r run analysis} |
|
|
100 |
|
|
|
101 |
# Read and process codex data (uses future package) |
|
|
102 |
nn <- run_NNanalysis(data = codex_annotation, regions = unique(codex_annotation$unique_region), |
|
|
103 |
plan_session = "multisession", |
|
|
104 |
add.prop=TRUE, |
|
|
105 |
n_workers = 10, |
|
|
106 |
nn = 25) |
|
|
107 |
|
|
|
108 |
# Use k-means clustering to determine neighborhood classes |
|
|
109 |
set.seed(1) |
|
|
110 |
hclust <- kmeans(nn, centers = 10, iter.max = 50, nstart = 1) |
|
|
111 |
nn_classes <- data.frame(Region=hclust$cluster) %>% |
|
|
112 |
mutate(Region=as.character(Region)) %>% |
|
|
113 |
rownames_to_column("unique_cell_id") |
|
|
114 |
|
|
|
115 |
# Use PCA on nearst neighbour matrix |
|
|
116 |
pca_codex <- prcomp(nn, scale. = T, center = T) |
|
|
117 |
|
|
|
118 |
# Remove objects |
|
|
119 |
rm(list = setdiff(ls(), c("nn", "nn_classes", "pca_codex", "run_NNanalysis"))) |
|
|
120 |
|
|
|
121 |
``` |
|
|
122 |
|
|
|
123 |
# Save |
|
|
124 |
```{r save} |
|
|
125 |
|
|
|
126 |
save.image("output/Neighborhood_results.RData") |
|
|
127 |
|
|
|
128 |
``` |
|
|
129 |
|
|
|
130 |
# Session Info |
|
|
131 |
```{r session info} |
|
|
132 |
|
|
|
133 |
sessionInfo() |
|
|
134 |
|
|
|
135 |
``` |
|
|
136 |
|