[9905a0]: / analysis / NeighborhoodAnalysis.Rmd

Download this file

137 lines (97 with data), 3.3 kB

---
title: "Neighborhood analysis"
author: Tobias Roider
date: "Last compiled on `r format(Sys.time(), '%d %B, %Y, %X')`"
output: 
  
  rmdformats::readthedown:
    
editor_options: 
  chunk_output_type: console
---

```{r options, include=FALSE, warning = FALSE}

library(knitr)
opts_chunk$set(echo=TRUE, tidy=FALSE, include=TRUE, message=FALSE,
               dpi = 100, cache = FALSE, warning = FALSE)
opts_knit$set(root.dir = "../")
options(bitmapType = "cairo")

```

# Load packages, functions and data
```{r Load packages and functions}

library(Seurat)
library(tidyverse)
library(readxl)

source("R/ReadPackages.R")
source("R/Functions.R")

# Read CODEX data (only meta data) 
# Available at BioStudies database (https://www.ebi.ac.uk/biostudies/) under accession number S-BIAD565
codex_annotation <- data.table::fread("data/cells_annotation.csv") %>% tibble() %>% 
  filter(Merged_final!="na")
  
```

# Function
```{r function}

# Run nearest neighbor analysis
run_NNanalysis <- function(data=NULL, plan_session="sequential", n_workers=1, nn=25, regions=NULL, 
                           add.prop=TRUE){
  
  require(future)
  require(future.apply)
  require(FNN)
  
  if(plan_session=="sequential"){
    plan(strategy = plan_session)
  }
  
  if(plan_session=="multisession"){
    plan(strategy = plan_session, workers=n_workers)
  }
  
  options(future.globals.maxSize= 8000*1024^2)
  
  output <- future_lapply(regions, function(r){
    
    df <- data %>% 
      filter(unique_region==r) 
    
    df_nn <- get.knn(select(df,x,y), nn)
    
    df_nn <- df_nn$nn.index %>% 
      `rownames<-`(df$unique_cell_id) %>% 
      data.frame() %>% 
      rownames_to_column("unique_cell_id") %>% 
      pivot_longer(cols = 2:ncol(.)) %>% 
      left_join(., df %>% select(unique_cell_id_nn=unique_cell_id, Merged_final) %>% mutate(value=1:nrow(.)), by="value") %>% 
      select(-value) 
    
    if(add.prop==TRUE){
      mat <- df_nn %>% 
        add_prop(vars = c("unique_cell_id", "Merged_final"), group.vars = 1) %>% 
        pivot_wider(names_from = "Merged_final", values_from = "Prop", values_fill = 0) %>% 
        column_to_rownames("unique_cell_id")
      mat <- mat[names(which(rowSums(mat)>0)), ]

    } else {
      mat <- df_nn 
      }

    return(mat)
  })
  plan(strategy = "sequential")
  
  mat <- do.call(rbind, output)
  
  return(mat)
}

```

# Run Analysis
```{r run analysis}

# Read and process codex data (uses future package)
nn <- run_NNanalysis(data = codex_annotation, regions = unique(codex_annotation$unique_region), 
                     plan_session = "multisession", 
                     add.prop=TRUE,
                     n_workers = 10, 
                     nn = 25)

# Use k-means clustering to determine neighborhood classes
set.seed(1)
hclust <- kmeans(nn, centers = 10, iter.max = 50, nstart = 1)
nn_classes <- data.frame(Region=hclust$cluster)  %>% 
  mutate(Region=as.character(Region)) %>% 
  rownames_to_column("unique_cell_id")

# Use PCA on nearst neighbour matrix
pca_codex <- prcomp(nn, scale. = T, center = T)

# Remove objects
rm(list = setdiff(ls(), c("nn", "nn_classes", "pca_codex", "run_NNanalysis")))

```

# Save
```{r save}

save.image("output/Neighborhood_results.RData")

```

# Session Info
```{r session info}

sessionInfo()

```