|
a |
|
b/val.py |
|
|
1 |
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license |
|
|
2 |
""" |
|
|
3 |
Validate a trained YOLOv5 detection model on a detection dataset |
|
|
4 |
|
|
|
5 |
Usage: |
|
|
6 |
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640 |
|
|
7 |
|
|
|
8 |
Usage - formats: |
|
|
9 |
$ python val.py --weights yolov5s.pt # PyTorch |
|
|
10 |
yolov5s.torchscript # TorchScript |
|
|
11 |
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn |
|
|
12 |
yolov5s_openvino_model # OpenVINO |
|
|
13 |
yolov5s.engine # TensorRT |
|
|
14 |
yolov5s.mlmodel # CoreML (macOS-only) |
|
|
15 |
yolov5s_saved_model # TensorFlow SavedModel |
|
|
16 |
yolov5s.pb # TensorFlow GraphDef |
|
|
17 |
yolov5s.tflite # TensorFlow Lite |
|
|
18 |
yolov5s_edgetpu.tflite # TensorFlow Edge TPU |
|
|
19 |
yolov5s_paddle_model # PaddlePaddle |
|
|
20 |
""" |
|
|
21 |
|
|
|
22 |
import argparse |
|
|
23 |
import json |
|
|
24 |
import os |
|
|
25 |
import subprocess |
|
|
26 |
import sys |
|
|
27 |
from pathlib import Path |
|
|
28 |
|
|
|
29 |
import numpy as np |
|
|
30 |
import torch |
|
|
31 |
from tqdm import tqdm |
|
|
32 |
import csv |
|
|
33 |
import pandas as pd |
|
|
34 |
from tabulate import tabulate |
|
|
35 |
|
|
|
36 |
|
|
|
37 |
FILE = Path(__file__).resolve() |
|
|
38 |
ROOT = FILE.parents[0] # YOLOv5 root directory |
|
|
39 |
if str(ROOT) not in sys.path: |
|
|
40 |
sys.path.append(str(ROOT)) # add ROOT to PATH |
|
|
41 |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative |
|
|
42 |
|
|
|
43 |
from models.common import DetectMultiBackend |
|
|
44 |
from utils.callbacks import Callbacks |
|
|
45 |
from utils.dataloaders import create_dataloader |
|
|
46 |
from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements, |
|
|
47 |
check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, |
|
|
48 |
print_args, scale_boxes, xywh2xyxy,extract_roi_features, xyxy2xywh,get_object_level_feature_maps2,xywh_to_xyxy,get_fixed_xyxy) |
|
|
49 |
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou |
|
|
50 |
from utils.plots import output_to_target, plot_images, plot_val_study |
|
|
51 |
from utils.torch_utils import select_device, smart_inference_mode |
|
|
52 |
from utils.my_model import MyCNN |
|
|
53 |
import torch.nn.functional as F |
|
|
54 |
import re |
|
|
55 |
from torchvision.ops import roi_align |
|
|
56 |
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score |
|
|
57 |
|
|
|
58 |
# csv_file_path = 'data/WBC_dataset_sample/Attribute_model/attributes_prediction.csv' |
|
|
59 |
# folder_name = 'data/WBC_dataset_sample/' |
|
|
60 |
|
|
|
61 |
# torch.backends.cudnn.enabled =False |
|
|
62 |
|
|
|
63 |
def save_one_txt(predn, save_conf, shape, file): |
|
|
64 |
# Save one txt result |
|
|
65 |
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh |
|
|
66 |
for *xyxy, conf, cls in predn.tolist(): |
|
|
67 |
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh |
|
|
68 |
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format |
|
|
69 |
with open(file, 'a') as f: |
|
|
70 |
f.write(('%g ' * len(line)).rstrip() % line + '\n') |
|
|
71 |
|
|
|
72 |
|
|
|
73 |
def save_one_json(predn, jdict, path, class_map): |
|
|
74 |
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} |
|
|
75 |
image_id = int(path.stem) if path.stem.isnumeric() else path.stem |
|
|
76 |
box = xyxy2xywh(predn[:, :4]) # xywh |
|
|
77 |
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner |
|
|
78 |
for p, b in zip(predn.tolist(), box.tolist()): |
|
|
79 |
jdict.append({ |
|
|
80 |
'image_id': image_id, |
|
|
81 |
'category_id': class_map[int(p[5])], |
|
|
82 |
'bbox': [round(x, 3) for x in b], |
|
|
83 |
'score': round(p[4], 5)}) |
|
|
84 |
|
|
|
85 |
def process_batch(detections, labels, iouv): |
|
|
86 |
""" |
|
|
87 |
Return correct prediction matrix. |
|
|
88 |
|
|
|
89 |
Arguments: |
|
|
90 |
detections (array[N, 6]), x1, y1, x2, y2, conf, class |
|
|
91 |
labels (array[M, 5]), class, x1, y1, x2, y2 |
|
|
92 |
Returns: |
|
|
93 |
correct (array[N, 10]), for 10 IoU levels |
|
|
94 |
""" |
|
|
95 |
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool) |
|
|
96 |
iou = box_iou(labels[:, 1:], detections[:, :4]) |
|
|
97 |
correct_class = labels[:, 0:1] == detections[:, 5] |
|
|
98 |
for i in range(len(iouv)): |
|
|
99 |
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match |
|
|
100 |
if x[0].shape[0]: |
|
|
101 |
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou] |
|
|
102 |
if x[0].shape[0] > 1: |
|
|
103 |
matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
104 |
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] |
|
|
105 |
# matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
106 |
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] |
|
|
107 |
correct[matches[:, 1].astype(int), i] = True |
|
|
108 |
return torch.tensor(correct, dtype=torch.bool, device=iouv.device) |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
def my_process_batch(detections, labels, iouv): |
|
|
112 |
""" |
|
|
113 |
Return correct prediction matrix and top indices. |
|
|
114 |
|
|
|
115 |
Arguments: |
|
|
116 |
detections (array[N, 6]), x1, y1, x2, y2, conf, class |
|
|
117 |
labels (array[M, 5]), class, x1, y1, x2, y2 |
|
|
118 |
iouv (tensor[10]), IoU thresholds |
|
|
119 |
Returns: |
|
|
120 |
correct (array[N, 10]), for 10 IoU levels |
|
|
121 |
top_indices (tensor[M]), top IoU-gaining detection indices for each label |
|
|
122 |
""" |
|
|
123 |
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool) |
|
|
124 |
iou = box_iou(labels[:, 1:], detections[:, :4]) |
|
|
125 |
correct_class = labels[:, 0:1] == detections[:, 5] |
|
|
126 |
|
|
|
127 |
top_indices = torch.argmax(iou, dim=1) |
|
|
128 |
|
|
|
129 |
for i in range(len(iouv)): |
|
|
130 |
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match |
|
|
131 |
if x[0].shape[0]: |
|
|
132 |
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou] |
|
|
133 |
if x[0].shape[0] > 1: |
|
|
134 |
matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
135 |
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] |
|
|
136 |
# matches = matches[matches[:, 2].argsort()[::-1]] |
|
|
137 |
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] |
|
|
138 |
correct[matches[:, 1].astype(int), i] = True |
|
|
139 |
|
|
|
140 |
return torch.tensor(correct, dtype=torch.bool, device=iouv.device), top_indices |
|
|
141 |
|
|
|
142 |
|
|
|
143 |
|
|
|
144 |
@smart_inference_mode() |
|
|
145 |
def run( |
|
|
146 |
data, cell_model, |
|
|
147 |
weights=None, # model.pt path(s) |
|
|
148 |
batch_size=32, # batch size |
|
|
149 |
imgsz=640, # inference size (pixels) |
|
|
150 |
conf_thres=0.001, # confidence threshold |
|
|
151 |
iou_thres=0.6, # NMS IoU threshold |
|
|
152 |
max_det=300, # maximum detections per image |
|
|
153 |
task='val', # train, val, test, speed or study |
|
|
154 |
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu |
|
|
155 |
workers=8, # max dataloader workers (per RANK in DDP mode) |
|
|
156 |
single_cls=False, # treat as single-class dataset |
|
|
157 |
augment=False, # augmented inference |
|
|
158 |
verbose=False, # verbose output |
|
|
159 |
save_txt=False, # save results to *.txt |
|
|
160 |
save_hybrid=False, # save label+prediction hybrid results to *.txt |
|
|
161 |
save_conf=False, # save confidences in --save-txt labels |
|
|
162 |
save_json=False, # save a COCO-JSON results file |
|
|
163 |
project=ROOT / 'runs/val', # save to project/name |
|
|
164 |
name='exp', # save to project/name |
|
|
165 |
exist_ok=False, # existing project/name ok, do not increment |
|
|
166 |
half=True, # use FP16 half-precision inference |
|
|
167 |
dnn=False, # use OpenCV DNN for ONNX inference |
|
|
168 |
model=None, |
|
|
169 |
dataloader=None, |
|
|
170 |
save_dir=Path(''), |
|
|
171 |
plots=True, |
|
|
172 |
callbacks=Callbacks(), |
|
|
173 |
compute_loss=None |
|
|
174 |
|
|
|
175 |
): |
|
|
176 |
# Initialize/load model and set device |
|
|
177 |
training = model is not None |
|
|
178 |
if training: # called by train.py |
|
|
179 |
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model |
|
|
180 |
half &= device.type != 'cpu' # half precision only supported on CUDA |
|
|
181 |
model.half() if half else model.float() |
|
|
182 |
else: # called directly |
|
|
183 |
device = select_device(device, batch_size=batch_size) |
|
|
184 |
|
|
|
185 |
# Directories |
|
|
186 |
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run |
|
|
187 |
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir |
|
|
188 |
|
|
|
189 |
# Load model |
|
|
190 |
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) |
|
|
191 |
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine |
|
|
192 |
imgsz = check_img_size(imgsz, s=stride) # check image size |
|
|
193 |
half = model.fp16 # FP16 supported on limited backends with CUDA |
|
|
194 |
if engine: |
|
|
195 |
batch_size = model.batch_size |
|
|
196 |
else: |
|
|
197 |
device = model.device |
|
|
198 |
if not (pt or jit): |
|
|
199 |
batch_size = 1 # export.py models default to batch-size 1 |
|
|
200 |
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') |
|
|
201 |
|
|
|
202 |
# Data |
|
|
203 |
data = check_dataset(data) # check |
|
|
204 |
|
|
|
205 |
# Configure |
|
|
206 |
model.eval() |
|
|
207 |
cuda = device.type != 'cpu' |
|
|
208 |
is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset |
|
|
209 |
nc = 1 if single_cls else int(data['nc']) # number of classes |
|
|
210 |
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95 |
|
|
211 |
niou = iouv.numel() |
|
|
212 |
|
|
|
213 |
# Dataloader |
|
|
214 |
if not training: |
|
|
215 |
if pt and not single_cls: # check --weights are trained on --data |
|
|
216 |
ncm = model.model.nc |
|
|
217 |
assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \ |
|
|
218 |
f'classes). Pass correct combination of --weights and --data that are trained together.' |
|
|
219 |
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup |
|
|
220 |
pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks |
|
|
221 |
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images |
|
|
222 |
dataloader = create_dataloader(data[task], |
|
|
223 |
imgsz, |
|
|
224 |
batch_size, |
|
|
225 |
stride, |
|
|
226 |
single_cls, |
|
|
227 |
pad=pad, |
|
|
228 |
rect=rect, |
|
|
229 |
workers=workers, |
|
|
230 |
prefix=colorstr(f'{task}: '))[0] |
|
|
231 |
|
|
|
232 |
seen = 0 |
|
|
233 |
confusion_matrix = ConfusionMatrix(nc=nc) |
|
|
234 |
names = model.names if hasattr(model, 'names') else model.module.names # get class names |
|
|
235 |
if isinstance(names, (list, tuple)): # old format |
|
|
236 |
names = dict(enumerate(names)) |
|
|
237 |
class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) |
|
|
238 |
s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP50', 'mAP50-95') |
|
|
239 |
tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 |
|
|
240 |
dt = Profile(device=device), Profile(device=device), Profile(device=device) # profiling times |
|
|
241 |
loss = torch.zeros(3, device=device) |
|
|
242 |
jdict, stats, ap, ap_class = [], [], [], [] |
|
|
243 |
callbacks.run('on_val_start') |
|
|
244 |
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar |
|
|
245 |
|
|
|
246 |
all_rows = [] |
|
|
247 |
|
|
|
248 |
for batch_i, (im, targets, paths, shapes) in enumerate(pbar): |
|
|
249 |
epoch = 0 |
|
|
250 |
callbacks.run('on_val_batch_start') |
|
|
251 |
with dt[0]: |
|
|
252 |
if cuda: |
|
|
253 |
im = im.to(device, non_blocking=True) |
|
|
254 |
targets = targets.to(device) |
|
|
255 |
im = im.half() if half else im.float() # uint8 to fp16/32 |
|
|
256 |
im /= 255 # 0 - 255 to 0.0 - 1.0 |
|
|
257 |
nb, _, height, width = im.shape # batch size, channels, height, width |
|
|
258 |
|
|
|
259 |
# Inference |
|
|
260 |
with dt[1]: |
|
|
261 |
|
|
|
262 |
(preds, train_out),int_feats = model(im) if compute_loss else (model(im, augment=augment), None) #I changed here |
|
|
263 |
# cell_attribute_model= MyCNN().to(device) |
|
|
264 |
# cell_attribute_model.eval().to(device) |
|
|
265 |
|
|
|
266 |
|
|
|
267 |
# Loss |
|
|
268 |
if compute_loss: |
|
|
269 |
loss += compute_loss(train_out, targets[:,0:6])[1] # box, obj, cls # I changed here |
|
|
270 |
|
|
|
271 |
# NMS |
|
|
272 |
attribute_targets = targets[:,7:13] |
|
|
273 |
targets = targets[:, 0:6] # I changed here |
|
|
274 |
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels |
|
|
275 |
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling |
|
|
276 |
with dt[2]: |
|
|
277 |
preds = non_max_suppression(preds, |
|
|
278 |
conf_thres, |
|
|
279 |
iou_thres, |
|
|
280 |
labels=lb, |
|
|
281 |
multi_label=True, |
|
|
282 |
agnostic=single_cls, |
|
|
283 |
max_det=max_det) |
|
|
284 |
|
|
|
285 |
|
|
|
286 |
# Metrics |
|
|
287 |
for si, pred in enumerate(preds): |
|
|
288 |
labels = targets[targets[:, 0] == si, 1:] |
|
|
289 |
if (len(pred)>0): |
|
|
290 |
boxes = torch.cat([si * torch.ones(pred.shape[0], 1).to(device), pred[:, 0:4].to(device)], dim=1) |
|
|
291 |
|
|
|
292 |
int_feats_p2 = int_feats[0][si].to(torch.float32).unsqueeze(0) |
|
|
293 |
int_feats_p3 = int_feats[1][si].to(torch.float32).unsqueeze(0) |
|
|
294 |
|
|
|
295 |
torch.cuda.empty_cache() |
|
|
296 |
|
|
|
297 |
all_top_indices_cell_pred = [] |
|
|
298 |
|
|
|
299 |
for i in range(len(pred)): |
|
|
300 |
|
|
|
301 |
pred_tensor = pred[i, 0:4] |
|
|
302 |
img_shape_tensor = torch.tensor([im.shape[2], im.shape[3],im.shape[2],im.shape[3]]).to(device) |
|
|
303 |
|
|
|
304 |
normalized_xyxy=pred_tensor / img_shape_tensor |
|
|
305 |
p2_feature_shape_tensor = torch.tensor([int_feats[0][si].shape[1], int_feats[0][si].shape[2],int_feats[0][si].shape[1],int_feats[0][si].shape[2]]).to(device) # reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device) |
|
|
306 |
p3_feature_shape_tensor = torch.tensor([int_feats[1][si].shape[1], int_feats[1][si].shape[2],int_feats[1][si].shape[1],int_feats[1][si].shape[2]]).to(device) # reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device) |
|
|
307 |
|
|
|
308 |
|
|
|
309 |
p2_normalized_xyxy = normalized_xyxy*p2_feature_shape_tensor |
|
|
310 |
p3_normalized_xyxy = normalized_xyxy*p3_feature_shape_tensor |
|
|
311 |
|
|
|
312 |
p2_x_min, p2_y_min, p2_x_max, p2_y_max = get_fixed_xyxy(p2_normalized_xyxy,int_feats_p2) |
|
|
313 |
p3_x_min, p3_y_min, p3_x_max, p3_y_max = get_fixed_xyxy(p3_normalized_xyxy,int_feats_p3) |
|
|
314 |
|
|
|
315 |
p2_roi = torch.tensor([p2_x_min, p2_y_min, p2_x_max, p2_y_max], device=device).float() |
|
|
316 |
p3_roi = torch.tensor([p3_x_min, p3_y_min, p3_x_max, p3_y_max], device=device).float() |
|
|
317 |
|
|
|
318 |
batch_index = torch.tensor([0], dtype=torch.float32, device = device) |
|
|
319 |
|
|
|
320 |
# Concatenate the batch index to the bounding box coordinates |
|
|
321 |
p2_roi_with_batch_index = torch.cat([batch_index, p2_roi]) |
|
|
322 |
p3_roi_with_batch_index = torch.cat([batch_index, p3_roi]) |
|
|
323 |
|
|
|
324 |
p2_resized_object = roi_align(int_feats_p2, p2_roi_with_batch_index.unsqueeze(0).to(device), output_size=(24, 30)) |
|
|
325 |
p3_resized_object = roi_align(int_feats_p3, p3_roi_with_batch_index.unsqueeze(0).to(device), output_size=(24, 30)) |
|
|
326 |
concat_box = torch.cat([p2_resized_object,p3_resized_object],dim=1) |
|
|
327 |
|
|
|
328 |
cell_model.eval().to(device) |
|
|
329 |
|
|
|
330 |
output_cell_prediction= cell_model(concat_box) |
|
|
331 |
output_cell_prediction_prob = F.softmax(output_cell_prediction.view(6,2), dim=1) |
|
|
332 |
top_indices_cell_pred = torch.argmax(output_cell_prediction_prob, dim=1) |
|
|
333 |
all_top_indices_cell_pred.append(top_indices_cell_pred) |
|
|
334 |
|
|
|
335 |
|
|
|
336 |
|
|
|
337 |
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions |
|
|
338 |
path, shape = Path(paths[si]), shapes[si][0] |
|
|
339 |
correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init |
|
|
340 |
seen += 1 |
|
|
341 |
|
|
|
342 |
if npr == 0: |
|
|
343 |
if nl: |
|
|
344 |
stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0])) |
|
|
345 |
if plots: |
|
|
346 |
confusion_matrix.process_batch(detections=None, labels=labels[:, 0]) |
|
|
347 |
continue |
|
|
348 |
|
|
|
349 |
# Predictions |
|
|
350 |
if single_cls: |
|
|
351 |
pred[:, 5] = 0 |
|
|
352 |
predn = pred.clone() |
|
|
353 |
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred |
|
|
354 |
|
|
|
355 |
# Evaluate |
|
|
356 |
if nl: |
|
|
357 |
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes |
|
|
358 |
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels |
|
|
359 |
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels |
|
|
360 |
correct = process_batch(predn, labelsn, iouv) |
|
|
361 |
_,max_iou_indices = my_process_batch(predn, labelsn, iouv) |
|
|
362 |
max_iou_predicted_boxes=boxes[max_iou_indices] |
|
|
363 |
attributes_prediction=[] |
|
|
364 |
epoch = 0 |
|
|
365 |
for i in range(len(max_iou_indices)): |
|
|
366 |
|
|
|
367 |
attributes_pred = all_top_indices_cell_pred[max_iou_indices[i]].detach().cpu() |
|
|
368 |
attributes_prediction.append(attributes_pred) |
|
|
369 |
|
|
|
370 |
path_object = Path(path) |
|
|
371 |
# Extracting the name |
|
|
372 |
file_name = path_object.name |
|
|
373 |
filenames =[] |
|
|
374 |
|
|
|
375 |
checkpoint_dir = ROOT / "Attribute_model" |
|
|
376 |
checkpoint_file_path = checkpoint_dir / "checkpoint.txt" |
|
|
377 |
|
|
|
378 |
# Create directory if it doesn't exist |
|
|
379 |
checkpoint_dir.mkdir(parents=True, exist_ok=True) |
|
|
380 |
|
|
|
381 |
# Check if the checkpoint file exists and read it, otherwise initialize values |
|
|
382 |
if checkpoint_file_path.exists(): |
|
|
383 |
with checkpoint_file_path.open('r') as f: |
|
|
384 |
lines = f.readlines() |
|
|
385 |
epoch = int(lines[0]) |
|
|
386 |
best_accuracy = float(lines[1]) |
|
|
387 |
else: |
|
|
388 |
epoch = 0 |
|
|
389 |
best_accuracy = 0.0 |
|
|
390 |
|
|
|
391 |
# Create the checkpoint file with default values if it doesn't exist |
|
|
392 |
with checkpoint_file_path.open('w') as f: |
|
|
393 |
f.write(f"{epoch}\n{best_accuracy}\n") |
|
|
394 |
|
|
|
395 |
# Initialize lists for each attribute |
|
|
396 |
attribute_names = ['Nuclear Chromatin', 'Nuclear Shape', 'Nucleus', 'Cytoplasm', 'Cytoplasmic Basophilia', 'Cytoplasmic Vacuoles'] |
|
|
397 |
|
|
|
398 |
all_labels_list = [[] for _ in range(6)] |
|
|
399 |
all_prediction_attributes_list = [[] for _ in range(6)] |
|
|
400 |
|
|
|
401 |
|
|
|
402 |
|
|
|
403 |
for i in range(len(attributes_prediction)): |
|
|
404 |
count = 0 |
|
|
405 |
label = attribute_targets[i].detach().cpu().int() |
|
|
406 |
|
|
|
407 |
if all(x != 2 for x in label): |
|
|
408 |
filenames.append(file_name) |
|
|
409 |
|
|
|
410 |
# Append the label and prediction to the corresponding attribute list |
|
|
411 |
for j in range(6): |
|
|
412 |
all_labels_list[j].append(label[j].item()) |
|
|
413 |
all_prediction_attributes_list[j].append(attributes_prediction[i][j].item()) |
|
|
414 |
|
|
|
415 |
# Combine data into rows |
|
|
416 |
rows = zip(filenames, *all_labels_list, *all_prediction_attributes_list) |
|
|
417 |
all_rows.extend(rows) |
|
|
418 |
|
|
|
419 |
|
|
|
420 |
|
|
|
421 |
if plots: |
|
|
422 |
cnf_,indices= my_process_batch(predn, labelsn,iouv=iouv) |
|
|
423 |
confusion_matrix.process_batch(predn, labelsn) |
|
|
424 |
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls) |
|
|
425 |
|
|
|
426 |
# Save/log |
|
|
427 |
if save_txt: |
|
|
428 |
(save_dir / 'labels').mkdir(parents=True, exist_ok=True) |
|
|
429 |
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') |
|
|
430 |
if save_json: |
|
|
431 |
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary |
|
|
432 |
callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) |
|
|
433 |
|
|
|
434 |
# Plot images |
|
|
435 |
if plots and batch_i < 3: |
|
|
436 |
plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels |
|
|
437 |
plot_images(im, output_to_target(preds), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred |
|
|
438 |
|
|
|
439 |
callbacks.run('on_val_batch_end', batch_i, im, targets, paths, shapes, preds) |
|
|
440 |
|
|
|
441 |
|
|
|
442 |
# Assuming ROOT is defined |
|
|
443 |
# Initialize epoch and best accuracy |
|
|
444 |
attribute_model_dir = ROOT / "Attribute_model" |
|
|
445 |
checkpoint_file_path = attribute_model_dir / "checkpoint.txt" |
|
|
446 |
attribute_names = ['Nuclear Chromatin', 'Nuclear Shape', 'Nucleus', 'Cytoplasm', 'Cytoplasmic Basophilia', 'Cytoplasmic Vacuoles'] |
|
|
447 |
|
|
|
448 |
# Create directory if it doesn't exist |
|
|
449 |
attribute_model_dir.mkdir(parents=True, exist_ok=True) |
|
|
450 |
|
|
|
451 |
# Check if the checkpoint file exists and read it, otherwise initialize values |
|
|
452 |
if checkpoint_file_path.exists(): |
|
|
453 |
with checkpoint_file_path.open('r') as f: |
|
|
454 |
lines = f.readlines() |
|
|
455 |
epoch = int(lines[0]) |
|
|
456 |
best_accuracy = float(lines[1]) |
|
|
457 |
else: |
|
|
458 |
epoch = 0 |
|
|
459 |
best_accuracy = 0.0 |
|
|
460 |
|
|
|
461 |
# Write to the CSV file |
|
|
462 |
csv_file_path_with_epoch = attribute_model_dir / f"{attribute_model_dir}_{epoch}.csv" |
|
|
463 |
with open(csv_file_path_with_epoch, 'a', newline='') as csvfile: |
|
|
464 |
csv_writer = csv.writer(csvfile) |
|
|
465 |
|
|
|
466 |
# Write header if the file is empty |
|
|
467 |
if os.path.getsize(csv_file_path_with_epoch) == 0: |
|
|
468 |
header = ['filename'] + [f'{attr}' for attr in attribute_names] + [f'pred_{attr}' for attr in attribute_names] |
|
|
469 |
csv_writer.writerow(header) |
|
|
470 |
|
|
|
471 |
# Write all accumulated rows |
|
|
472 |
csv_writer.writerows(all_rows) |
|
|
473 |
|
|
|
474 |
|
|
|
475 |
# Read the CSV file into a DataFrame |
|
|
476 |
df = pd.read_csv(csv_file_path_with_epoch, header=None, names=['filename', 'Nuclear Chromatin','Nuclear Shape','Nucleus','Cytoplasm','Cytoplasmic Basophilia','Cytoplasmic Vacuoles','pred_Nuclear Chromatin','pred_Nuclear Shape','pred_Nucleus','pred_Cytoplasm','pred_Cytoplasmic Basophilia','pred_Cytoplasmic Vacuoles']) |
|
|
477 |
|
|
|
478 |
# Drop the first row if it contains headers |
|
|
479 |
df = df.iloc[1:] |
|
|
480 |
|
|
|
481 |
# Convert label columns to numeric, replace invalid literals with NaN |
|
|
482 |
Nuclear_Chromatin_array = pd.to_numeric(df['Nuclear Chromatin'], errors='coerce') |
|
|
483 |
Nuclear_Shape_array = pd.to_numeric(df['Nuclear Shape'], errors='coerce') |
|
|
484 |
Nucleus_array = pd.to_numeric(df['Nucleus'], errors='coerce') |
|
|
485 |
Cytoplasm_array = pd.to_numeric(df['Cytoplasm'], errors='coerce') |
|
|
486 |
Cytoplasmic_Basophilia_array = pd.to_numeric(df['Cytoplasmic Basophilia'], errors='coerce') |
|
|
487 |
Cytoplasmic_Vacuoles_array = pd.to_numeric(df['Cytoplasmic Vacuoles'], errors='coerce') |
|
|
488 |
|
|
|
489 |
pred_Nuclear_Chromatin_array = pd.to_numeric(df['pred_Nuclear Chromatin'], errors='coerce') |
|
|
490 |
pred_Nuclear_Shape_array = pd.to_numeric(df['pred_Nuclear Shape'], errors='coerce') |
|
|
491 |
pred_Nucleus_array = pd.to_numeric(df['pred_Nucleus'], errors='coerce') |
|
|
492 |
pred_Cytoplasm_array = pd.to_numeric(df['pred_Cytoplasm'], errors='coerce') |
|
|
493 |
pred_Cytoplasmic_Basophilia_array = pd.to_numeric(df['pred_Cytoplasmic Basophilia'], errors='coerce') |
|
|
494 |
pred_Cytoplasmic_Vacuoles_array = pd.to_numeric(df['pred_Cytoplasmic Vacuoles'], errors='coerce') |
|
|
495 |
|
|
|
496 |
|
|
|
497 |
# Exclude or replace non-numeric entries |
|
|
498 |
Nuclear_Chromatin_array = Nuclear_Chromatin_array[~np.isnan(Nuclear_Chromatin_array)].astype(int) |
|
|
499 |
Nuclear_Shape_array = Nuclear_Shape_array[~np.isnan(Nuclear_Shape_array)].astype(int) |
|
|
500 |
Nucleus_array = Nucleus_array[~np.isnan(Nucleus_array)].astype(int) |
|
|
501 |
Cytoplasm_array = Cytoplasm_array[~np.isnan(Cytoplasm_array)].astype(int) |
|
|
502 |
Cytoplasmic_Basophilia_array = Cytoplasmic_Basophilia_array[~np.isnan(Cytoplasmic_Basophilia_array)].astype(int) |
|
|
503 |
Cytoplasmic_Vacuoles_array = Cytoplasmic_Vacuoles_array[~np.isnan(Cytoplasmic_Vacuoles_array)].astype(int) |
|
|
504 |
|
|
|
505 |
# Exclude or replace non-numeric entries |
|
|
506 |
pred_Nuclear_Chromatin_array = pred_Nuclear_Chromatin_array[~np.isnan(pred_Nuclear_Chromatin_array)].astype(int) |
|
|
507 |
pred_Nuclear_Shape_array = pred_Nuclear_Shape_array[~np.isnan(pred_Nuclear_Shape_array)].astype(int) |
|
|
508 |
pred_Nucleus_array = pred_Nucleus_array[~np.isnan(pred_Nucleus_array)].astype(int) |
|
|
509 |
pred_Cytoplasm_array = pred_Cytoplasm_array[~np.isnan(pred_Cytoplasm_array)].astype(int) |
|
|
510 |
pred_Cytoplasmic_Basophilia_array = pred_Cytoplasmic_Basophilia_array[~np.isnan(pred_Cytoplasmic_Basophilia_array)].astype(int) |
|
|
511 |
pred_Cytoplasmic_Vacuoles_array = pred_Cytoplasmic_Vacuoles_array[~np.isnan(pred_Cytoplasmic_Vacuoles_array)].astype(int) |
|
|
512 |
|
|
|
513 |
|
|
|
514 |
|
|
|
515 |
def compute_and_print_metrics(attribute_name, true_labels, pred_labels): |
|
|
516 |
# Exclude or replace non-numeric entries |
|
|
517 |
true_labels = true_labels[~np.isnan(true_labels)].astype(int) |
|
|
518 |
pred_labels = pred_labels[~np.isnan(pred_labels)].astype(int) |
|
|
519 |
|
|
|
520 |
# Compute metrics |
|
|
521 |
accuracy = accuracy_score(true_labels, pred_labels) |
|
|
522 |
precision = precision_score(true_labels, pred_labels) |
|
|
523 |
recall = recall_score(true_labels, pred_labels) |
|
|
524 |
f1 = f1_score(true_labels, pred_labels) |
|
|
525 |
|
|
|
526 |
return [attribute_name, accuracy, precision, recall, f1] |
|
|
527 |
|
|
|
528 |
|
|
|
529 |
|
|
|
530 |
# Compute metrics |
|
|
531 |
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy |
|
|
532 |
if len(stats) and stats[0].any(): |
|
|
533 |
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) |
|
|
534 |
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95 |
|
|
535 |
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() |
|
|
536 |
nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class |
|
|
537 |
|
|
|
538 |
# Print results |
|
|
539 |
pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format |
|
|
540 |
LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) |
|
|
541 |
if nt.sum() == 0: |
|
|
542 |
LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels') |
|
|
543 |
|
|
|
544 |
# Print results per class |
|
|
545 |
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): |
|
|
546 |
for i, c in enumerate(ap_class): |
|
|
547 |
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) |
|
|
548 |
|
|
|
549 |
|
|
|
550 |
# Example usage for each attribute |
|
|
551 |
# Example usage for each attribute |
|
|
552 |
metrics = [] |
|
|
553 |
NC_prec = compute_and_print_metrics('Nuclear_Chromatin', Nuclear_Chromatin_array, pred_Nuclear_Chromatin_array) |
|
|
554 |
NS_prec = compute_and_print_metrics('Nuclear_Shape', Nuclear_Shape_array, pred_Nuclear_Shape_array) |
|
|
555 |
N_prec = compute_and_print_metrics('Nucleus', Nucleus_array, pred_Nucleus_array) |
|
|
556 |
C_prec = compute_and_print_metrics('Cytoplasm', Cytoplasm_array, pred_Cytoplasm_array) |
|
|
557 |
CB_prec = compute_and_print_metrics('Cytoplasmic_Basophilia', Cytoplasmic_Basophilia_array, pred_Cytoplasmic_Basophilia_array) |
|
|
558 |
CV_prec = compute_and_print_metrics('Cytoplasmic_Vacuoles', Cytoplasmic_Vacuoles_array, pred_Cytoplasmic_Vacuoles_array) |
|
|
559 |
|
|
|
560 |
# Calculate average precision |
|
|
561 |
average_precision = np.mean([NC_prec[-1], NS_prec[-1], N_prec[-1], C_prec[-1], CB_prec[-1], CV_prec[-1]]) |
|
|
562 |
|
|
|
563 |
# Append results to metrics list |
|
|
564 |
metrics.extend([NC_prec, NS_prec, N_prec, C_prec, CB_prec, CV_prec]) |
|
|
565 |
# ["Average Precision", "", "", "", "", average_precision]]) |
|
|
566 |
|
|
|
567 |
# Print table |
|
|
568 |
headers = ["Attribute", "Accuracy", "Precision", "Recall", "F1"] |
|
|
569 |
print(tabulate(metrics, headers=headers, tablefmt="grid")) |
|
|
570 |
|
|
|
571 |
|
|
|
572 |
# Save the model if the current accuracy is better than the best accuracy |
|
|
573 |
if average_precision > best_accuracy: |
|
|
574 |
best_accuracy = average_precision |
|
|
575 |
cell_model.train().to(device) |
|
|
576 |
torch.save(cell_model.state_dict(), attribute_model_dir / f"best_weights_{best_accuracy}_{epoch}.pth") |
|
|
577 |
|
|
|
578 |
epoch += 1 |
|
|
579 |
|
|
|
580 |
# Save the updated epoch and best accuracy to the file |
|
|
581 |
with checkpoint_file_path.open('w') as f: |
|
|
582 |
f.write(f"{epoch}\n{best_accuracy}") |
|
|
583 |
|
|
|
584 |
cell_model.train().to(device) |
|
|
585 |
torch.save(cell_model.state_dict(), attribute_model_dir / "last_weights.pth") |
|
|
586 |
|
|
|
587 |
# Print speeds |
|
|
588 |
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image |
|
|
589 |
if not training: |
|
|
590 |
shape = (batch_size, 3, imgsz, imgsz) |
|
|
591 |
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) |
|
|
592 |
|
|
|
593 |
# Plots |
|
|
594 |
if plots: |
|
|
595 |
confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) |
|
|
596 |
callbacks.run('on_val_end', nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix) |
|
|
597 |
|
|
|
598 |
# Save JSON |
|
|
599 |
if save_json and len(jdict): |
|
|
600 |
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights |
|
|
601 |
anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json')) # annotations |
|
|
602 |
if not os.path.exists(anno_json): |
|
|
603 |
anno_json = os.path.join(data['path'], 'annotations', 'instances_val2017.json') |
|
|
604 |
pred_json = str(save_dir / f'{w}_predictions.json') # predictions |
|
|
605 |
LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...') |
|
|
606 |
with open(pred_json, 'w') as f: |
|
|
607 |
json.dump(jdict, f) |
|
|
608 |
|
|
|
609 |
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb |
|
|
610 |
check_requirements('pycocotools>=2.0.6') |
|
|
611 |
from pycocotools.coco import COCO |
|
|
612 |
from pycocotools.cocoeval import COCOeval |
|
|
613 |
|
|
|
614 |
anno = COCO(anno_json) # init annotations api |
|
|
615 |
pred = anno.loadRes(pred_json) # init predictions api |
|
|
616 |
eval = COCOeval(anno, pred, 'bbox') |
|
|
617 |
if is_coco: |
|
|
618 |
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate |
|
|
619 |
eval.evaluate() |
|
|
620 |
eval.accumulate() |
|
|
621 |
eval.summarize() |
|
|
622 |
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) |
|
|
623 |
except Exception as e: |
|
|
624 |
LOGGER.info(f'pycocotools unable to run: {e}') |
|
|
625 |
|
|
|
626 |
# Return results |
|
|
627 |
model.float() # for training |
|
|
628 |
if not training: |
|
|
629 |
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' |
|
|
630 |
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") |
|
|
631 |
maps = np.zeros(nc) + map |
|
|
632 |
for i, c in enumerate(ap_class): |
|
|
633 |
maps[c] = ap[i] |
|
|
634 |
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t |
|
|
635 |
|
|
|
636 |
|
|
|
637 |
def parse_opt(): |
|
|
638 |
parser = argparse.ArgumentParser() |
|
|
639 |
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') |
|
|
640 |
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)') |
|
|
641 |
parser.add_argument('--batch-size', type=int, default=32, help='batch size') |
|
|
642 |
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') |
|
|
643 |
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold') |
|
|
644 |
parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold') |
|
|
645 |
parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image') |
|
|
646 |
parser.add_argument('--task', default='val', help='train, val, test, speed or study') |
|
|
647 |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
|
648 |
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') |
|
|
649 |
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') |
|
|
650 |
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
|
651 |
parser.add_argument('--verbose', action='store_true', help='report mAP by class') |
|
|
652 |
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|
|
653 |
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') |
|
|
654 |
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') |
|
|
655 |
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file') |
|
|
656 |
parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name') |
|
|
657 |
parser.add_argument('--name', default='exp', help='save to project/name') |
|
|
658 |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
|
659 |
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') |
|
|
660 |
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') |
|
|
661 |
opt = parser.parse_args() |
|
|
662 |
opt.data = check_yaml(opt.data) # check YAML |
|
|
663 |
opt.save_json |= opt.data.endswith('coco.yaml') |
|
|
664 |
opt.save_txt |= opt.save_hybrid |
|
|
665 |
print_args(vars(opt)) |
|
|
666 |
return opt |
|
|
667 |
|
|
|
668 |
|
|
|
669 |
def main(opt): |
|
|
670 |
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) |
|
|
671 |
|
|
|
672 |
if opt.task in ('train', 'val', 'test'): # run normally |
|
|
673 |
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466 |
|
|
674 |
LOGGER.info(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results') |
|
|
675 |
if opt.save_hybrid: |
|
|
676 |
LOGGER.info('WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone') |
|
|
677 |
run(**vars(opt)) |
|
|
678 |
|
|
|
679 |
else: |
|
|
680 |
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights] |
|
|
681 |
opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results |
|
|
682 |
if opt.task == 'speed': # speed benchmarks |
|
|
683 |
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt... |
|
|
684 |
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False |
|
|
685 |
for opt.weights in weights: |
|
|
686 |
run(**vars(opt), plots=False) |
|
|
687 |
|
|
|
688 |
elif opt.task == 'study': # speed vs mAP benchmarks |
|
|
689 |
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt... |
|
|
690 |
for opt.weights in weights: |
|
|
691 |
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to |
|
|
692 |
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis |
|
|
693 |
for opt.imgsz in x: # img-size |
|
|
694 |
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...') |
|
|
695 |
r, _, t = run(**vars(opt), plots=False) |
|
|
696 |
y.append(r + t) # results and times |
|
|
697 |
np.savetxt(f, y, fmt='%10.4g') # save |
|
|
698 |
subprocess.run(['zip', '-r', 'study.zip', 'study_*.txt']) |
|
|
699 |
plot_val_study(x=x) # plot |
|
|
700 |
else: |
|
|
701 |
raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")') |
|
|
702 |
|
|
|
703 |
|
|
|
704 |
if __name__ == '__main__': |
|
|
705 |
opt = parse_opt() |
|
|
706 |
main(opt) |