# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""
Validate a trained YOLOv5 detection model on a detection dataset
Usage:
$ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
Usage - formats:
$ python val.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
"""
import argparse
import json
import os
import subprocess
import sys
from pathlib import Path
import numpy as np
import torch
from tqdm import tqdm
import csv
import pandas as pd
from tabulate import tabulate
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.callbacks import Callbacks
from utils.dataloaders import create_dataloader
from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements,
check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression,
print_args, scale_boxes, xywh2xyxy,extract_roi_features, xyxy2xywh,get_object_level_feature_maps2,xywh_to_xyxy,get_fixed_xyxy)
from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
from utils.plots import output_to_target, plot_images, plot_val_study
from utils.torch_utils import select_device, smart_inference_mode
from utils.my_model import MyCNN
import torch.nn.functional as F
import re
from torchvision.ops import roi_align
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
# csv_file_path = 'data/WBC_dataset_sample/Attribute_model/attributes_prediction.csv'
# folder_name = 'data/WBC_dataset_sample/'
# torch.backends.cudnn.enabled =False
def save_one_txt(predn, save_conf, shape, file):
# Save one txt result
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(file, 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
def save_one_json(predn, jdict, path, class_map):
# Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(predn.tolist(), box.tolist()):
jdict.append({
'image_id': image_id,
'category_id': class_map[int(p[5])],
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
def process_batch(detections, labels, iouv):
"""
Return correct prediction matrix.
Arguments:
detections (array[N, 6]), x1, y1, x2, y2, conf, class
labels (array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (array[N, 10]), for 10 IoU levels
"""
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
iou = box_iou(labels[:, 1:], detections[:, :4])
correct_class = labels[:, 0:1] == detections[:, 5]
for i in range(len(iouv)):
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
def my_process_batch(detections, labels, iouv):
"""
Return correct prediction matrix and top indices.
Arguments:
detections (array[N, 6]), x1, y1, x2, y2, conf, class
labels (array[M, 5]), class, x1, y1, x2, y2
iouv (tensor[10]), IoU thresholds
Returns:
correct (array[N, 10]), for 10 IoU levels
top_indices (tensor[M]), top IoU-gaining detection indices for each label
"""
correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
iou = box_iou(labels[:, 1:], detections[:, :4])
correct_class = labels[:, 0:1] == detections[:, 5]
top_indices = torch.argmax(iou, dim=1)
for i in range(len(iouv)):
x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
# matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=iouv.device), top_indices
@smart_inference_mode()
def run(
data, cell_model,
weights=None, # model.pt path(s)
batch_size=32, # batch size
imgsz=640, # inference size (pixels)
conf_thres=0.001, # confidence threshold
iou_thres=0.6, # NMS IoU threshold
max_det=300, # maximum detections per image
task='val', # train, val, test, speed or study
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
workers=8, # max dataloader workers (per RANK in DDP mode)
single_cls=False, # treat as single-class dataset
augment=False, # augmented inference
verbose=False, # verbose output
save_txt=False, # save results to *.txt
save_hybrid=False, # save label+prediction hybrid results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_json=False, # save a COCO-JSON results file
project=ROOT / 'runs/val', # save to project/name
name='exp', # save to project/name
exist_ok=False, # existing project/name ok, do not increment
half=True, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
model=None,
dataloader=None,
save_dir=Path(''),
plots=True,
callbacks=Callbacks(),
compute_loss=None
):
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
half &= device.type != 'cpu' # half precision only supported on CUDA
model.half() if half else model.float()
else: # called directly
device = select_device(device, batch_size=batch_size)
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
imgsz = check_img_size(imgsz, s=stride) # check image size
half = model.fp16 # FP16 supported on limited backends with CUDA
if engine:
batch_size = model.batch_size
else:
device = model.device
if not (pt or jit):
batch_size = 1 # export.py models default to batch-size 1
LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
# Data
data = check_dataset(data) # check
# Configure
model.eval()
cuda = device.type != 'cpu'
is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
nc = 1 if single_cls else int(data['nc']) # number of classes
iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
niou = iouv.numel()
# Dataloader
if not training:
if pt and not single_cls: # check --weights are trained on --data
ncm = model.model.nc
assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
f'classes). Pass correct combination of --weights and --data that are trained together.'
model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
dataloader = create_dataloader(data[task],
imgsz,
batch_size,
stride,
single_cls,
pad=pad,
rect=rect,
workers=workers,
prefix=colorstr(f'{task}: '))[0]
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc)
names = model.names if hasattr(model, 'names') else model.module.names # get class names
if isinstance(names, (list, tuple)): # old format
names = dict(enumerate(names))
class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP50', 'mAP50-95')
tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
dt = Profile(device=device), Profile(device=device), Profile(device=device) # profiling times
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class = [], [], [], []
callbacks.run('on_val_start')
pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
all_rows = []
for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
epoch = 0
callbacks.run('on_val_batch_start')
with dt[0]:
if cuda:
im = im.to(device, non_blocking=True)
targets = targets.to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
nb, _, height, width = im.shape # batch size, channels, height, width
# Inference
with dt[1]:
(preds, train_out),int_feats = model(im) if compute_loss else (model(im, augment=augment), None) #I changed here
# cell_attribute_model= MyCNN().to(device)
# cell_attribute_model.eval().to(device)
# Loss
if compute_loss:
loss += compute_loss(train_out, targets[:,0:6])[1] # box, obj, cls # I changed here
# NMS
attribute_targets = targets[:,7:13]
targets = targets[:, 0:6] # I changed here
targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
with dt[2]:
preds = non_max_suppression(preds,
conf_thres,
iou_thres,
labels=lb,
multi_label=True,
agnostic=single_cls,
max_det=max_det)
# Metrics
for si, pred in enumerate(preds):
labels = targets[targets[:, 0] == si, 1:]
if (len(pred)>0):
boxes = torch.cat([si * torch.ones(pred.shape[0], 1).to(device), pred[:, 0:4].to(device)], dim=1)
int_feats_p2 = int_feats[0][si].to(torch.float32).unsqueeze(0)
int_feats_p3 = int_feats[1][si].to(torch.float32).unsqueeze(0)
torch.cuda.empty_cache()
all_top_indices_cell_pred = []
for i in range(len(pred)):
pred_tensor = pred[i, 0:4]
img_shape_tensor = torch.tensor([im.shape[2], im.shape[3],im.shape[2],im.shape[3]]).to(device)
normalized_xyxy=pred_tensor / img_shape_tensor
p2_feature_shape_tensor = torch.tensor([int_feats[0][si].shape[1], int_feats[0][si].shape[2],int_feats[0][si].shape[1],int_feats[0][si].shape[2]]).to(device) # reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device)
p3_feature_shape_tensor = torch.tensor([int_feats[1][si].shape[1], int_feats[1][si].shape[2],int_feats[1][si].shape[1],int_feats[1][si].shape[2]]).to(device) # reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device)
p2_normalized_xyxy = normalized_xyxy*p2_feature_shape_tensor
p3_normalized_xyxy = normalized_xyxy*p3_feature_shape_tensor
p2_x_min, p2_y_min, p2_x_max, p2_y_max = get_fixed_xyxy(p2_normalized_xyxy,int_feats_p2)
p3_x_min, p3_y_min, p3_x_max, p3_y_max = get_fixed_xyxy(p3_normalized_xyxy,int_feats_p3)
p2_roi = torch.tensor([p2_x_min, p2_y_min, p2_x_max, p2_y_max], device=device).float()
p3_roi = torch.tensor([p3_x_min, p3_y_min, p3_x_max, p3_y_max], device=device).float()
batch_index = torch.tensor([0], dtype=torch.float32, device = device)
# Concatenate the batch index to the bounding box coordinates
p2_roi_with_batch_index = torch.cat([batch_index, p2_roi])
p3_roi_with_batch_index = torch.cat([batch_index, p3_roi])
p2_resized_object = roi_align(int_feats_p2, p2_roi_with_batch_index.unsqueeze(0).to(device), output_size=(24, 30))
p3_resized_object = roi_align(int_feats_p3, p3_roi_with_batch_index.unsqueeze(0).to(device), output_size=(24, 30))
concat_box = torch.cat([p2_resized_object,p3_resized_object],dim=1)
cell_model.eval().to(device)
output_cell_prediction= cell_model(concat_box)
output_cell_prediction_prob = F.softmax(output_cell_prediction.view(6,2), dim=1)
top_indices_cell_pred = torch.argmax(output_cell_prediction_prob, dim=1)
all_top_indices_cell_pred.append(top_indices_cell_pred)
nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
path, shape = Path(paths[si]), shapes[si][0]
correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
seen += 1
if npr == 0:
if nl:
stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
if plots:
confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
continue
# Predictions
if single_cls:
pred[:, 5] = 0
predn = pred.clone()
scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
# Evaluate
if nl:
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
correct = process_batch(predn, labelsn, iouv)
_,max_iou_indices = my_process_batch(predn, labelsn, iouv)
max_iou_predicted_boxes=boxes[max_iou_indices]
attributes_prediction=[]
epoch = 0
for i in range(len(max_iou_indices)):
attributes_pred = all_top_indices_cell_pred[max_iou_indices[i]].detach().cpu()
attributes_prediction.append(attributes_pred)
path_object = Path(path)
# Extracting the name
file_name = path_object.name
filenames =[]
checkpoint_dir = ROOT / "Attribute_model"
checkpoint_file_path = checkpoint_dir / "checkpoint.txt"
# Create directory if it doesn't exist
checkpoint_dir.mkdir(parents=True, exist_ok=True)
# Check if the checkpoint file exists and read it, otherwise initialize values
if checkpoint_file_path.exists():
with checkpoint_file_path.open('r') as f:
lines = f.readlines()
epoch = int(lines[0])
best_accuracy = float(lines[1])
else:
epoch = 0
best_accuracy = 0.0
# Create the checkpoint file with default values if it doesn't exist
with checkpoint_file_path.open('w') as f:
f.write(f"{epoch}\n{best_accuracy}\n")
# Initialize lists for each attribute
attribute_names = ['Nuclear Chromatin', 'Nuclear Shape', 'Nucleus', 'Cytoplasm', 'Cytoplasmic Basophilia', 'Cytoplasmic Vacuoles']
all_labels_list = [[] for _ in range(6)]
all_prediction_attributes_list = [[] for _ in range(6)]
for i in range(len(attributes_prediction)):
count = 0
label = attribute_targets[i].detach().cpu().int()
if all(x != 2 for x in label):
filenames.append(file_name)
# Append the label and prediction to the corresponding attribute list
for j in range(6):
all_labels_list[j].append(label[j].item())
all_prediction_attributes_list[j].append(attributes_prediction[i][j].item())
# Combine data into rows
rows = zip(filenames, *all_labels_list, *all_prediction_attributes_list)
all_rows.extend(rows)
if plots:
cnf_,indices= my_process_batch(predn, labelsn,iouv=iouv)
confusion_matrix.process_batch(predn, labelsn)
stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls)
# Save/log
if save_txt:
(save_dir / 'labels').mkdir(parents=True, exist_ok=True)
save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
if save_json:
save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
# Plot images
if plots and batch_i < 3:
plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels
plot_images(im, output_to_target(preds), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
callbacks.run('on_val_batch_end', batch_i, im, targets, paths, shapes, preds)
# Assuming ROOT is defined
# Initialize epoch and best accuracy
attribute_model_dir = ROOT / "Attribute_model"
checkpoint_file_path = attribute_model_dir / "checkpoint.txt"
attribute_names = ['Nuclear Chromatin', 'Nuclear Shape', 'Nucleus', 'Cytoplasm', 'Cytoplasmic Basophilia', 'Cytoplasmic Vacuoles']
# Create directory if it doesn't exist
attribute_model_dir.mkdir(parents=True, exist_ok=True)
# Check if the checkpoint file exists and read it, otherwise initialize values
if checkpoint_file_path.exists():
with checkpoint_file_path.open('r') as f:
lines = f.readlines()
epoch = int(lines[0])
best_accuracy = float(lines[1])
else:
epoch = 0
best_accuracy = 0.0
# Write to the CSV file
csv_file_path_with_epoch = attribute_model_dir / f"{attribute_model_dir}_{epoch}.csv"
with open(csv_file_path_with_epoch, 'a', newline='') as csvfile:
csv_writer = csv.writer(csvfile)
# Write header if the file is empty
if os.path.getsize(csv_file_path_with_epoch) == 0:
header = ['filename'] + [f'{attr}' for attr in attribute_names] + [f'pred_{attr}' for attr in attribute_names]
csv_writer.writerow(header)
# Write all accumulated rows
csv_writer.writerows(all_rows)
# Read the CSV file into a DataFrame
df = pd.read_csv(csv_file_path_with_epoch, header=None, names=['filename', 'Nuclear Chromatin','Nuclear Shape','Nucleus','Cytoplasm','Cytoplasmic Basophilia','Cytoplasmic Vacuoles','pred_Nuclear Chromatin','pred_Nuclear Shape','pred_Nucleus','pred_Cytoplasm','pred_Cytoplasmic Basophilia','pred_Cytoplasmic Vacuoles'])
# Drop the first row if it contains headers
df = df.iloc[1:]
# Convert label columns to numeric, replace invalid literals with NaN
Nuclear_Chromatin_array = pd.to_numeric(df['Nuclear Chromatin'], errors='coerce')
Nuclear_Shape_array = pd.to_numeric(df['Nuclear Shape'], errors='coerce')
Nucleus_array = pd.to_numeric(df['Nucleus'], errors='coerce')
Cytoplasm_array = pd.to_numeric(df['Cytoplasm'], errors='coerce')
Cytoplasmic_Basophilia_array = pd.to_numeric(df['Cytoplasmic Basophilia'], errors='coerce')
Cytoplasmic_Vacuoles_array = pd.to_numeric(df['Cytoplasmic Vacuoles'], errors='coerce')
pred_Nuclear_Chromatin_array = pd.to_numeric(df['pred_Nuclear Chromatin'], errors='coerce')
pred_Nuclear_Shape_array = pd.to_numeric(df['pred_Nuclear Shape'], errors='coerce')
pred_Nucleus_array = pd.to_numeric(df['pred_Nucleus'], errors='coerce')
pred_Cytoplasm_array = pd.to_numeric(df['pred_Cytoplasm'], errors='coerce')
pred_Cytoplasmic_Basophilia_array = pd.to_numeric(df['pred_Cytoplasmic Basophilia'], errors='coerce')
pred_Cytoplasmic_Vacuoles_array = pd.to_numeric(df['pred_Cytoplasmic Vacuoles'], errors='coerce')
# Exclude or replace non-numeric entries
Nuclear_Chromatin_array = Nuclear_Chromatin_array[~np.isnan(Nuclear_Chromatin_array)].astype(int)
Nuclear_Shape_array = Nuclear_Shape_array[~np.isnan(Nuclear_Shape_array)].astype(int)
Nucleus_array = Nucleus_array[~np.isnan(Nucleus_array)].astype(int)
Cytoplasm_array = Cytoplasm_array[~np.isnan(Cytoplasm_array)].astype(int)
Cytoplasmic_Basophilia_array = Cytoplasmic_Basophilia_array[~np.isnan(Cytoplasmic_Basophilia_array)].astype(int)
Cytoplasmic_Vacuoles_array = Cytoplasmic_Vacuoles_array[~np.isnan(Cytoplasmic_Vacuoles_array)].astype(int)
# Exclude or replace non-numeric entries
pred_Nuclear_Chromatin_array = pred_Nuclear_Chromatin_array[~np.isnan(pred_Nuclear_Chromatin_array)].astype(int)
pred_Nuclear_Shape_array = pred_Nuclear_Shape_array[~np.isnan(pred_Nuclear_Shape_array)].astype(int)
pred_Nucleus_array = pred_Nucleus_array[~np.isnan(pred_Nucleus_array)].astype(int)
pred_Cytoplasm_array = pred_Cytoplasm_array[~np.isnan(pred_Cytoplasm_array)].astype(int)
pred_Cytoplasmic_Basophilia_array = pred_Cytoplasmic_Basophilia_array[~np.isnan(pred_Cytoplasmic_Basophilia_array)].astype(int)
pred_Cytoplasmic_Vacuoles_array = pred_Cytoplasmic_Vacuoles_array[~np.isnan(pred_Cytoplasmic_Vacuoles_array)].astype(int)
def compute_and_print_metrics(attribute_name, true_labels, pred_labels):
# Exclude or replace non-numeric entries
true_labels = true_labels[~np.isnan(true_labels)].astype(int)
pred_labels = pred_labels[~np.isnan(pred_labels)].astype(int)
# Compute metrics
accuracy = accuracy_score(true_labels, pred_labels)
precision = precision_score(true_labels, pred_labels)
recall = recall_score(true_labels, pred_labels)
f1 = f1_score(true_labels, pred_labels)
return [attribute_name, accuracy, precision, recall, f1]
# Compute metrics
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
if len(stats) and stats[0].any():
tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class
# Print results
pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format
LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
if nt.sum() == 0:
LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
# Print results per class
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Example usage for each attribute
# Example usage for each attribute
metrics = []
NC_prec = compute_and_print_metrics('Nuclear_Chromatin', Nuclear_Chromatin_array, pred_Nuclear_Chromatin_array)
NS_prec = compute_and_print_metrics('Nuclear_Shape', Nuclear_Shape_array, pred_Nuclear_Shape_array)
N_prec = compute_and_print_metrics('Nucleus', Nucleus_array, pred_Nucleus_array)
C_prec = compute_and_print_metrics('Cytoplasm', Cytoplasm_array, pred_Cytoplasm_array)
CB_prec = compute_and_print_metrics('Cytoplasmic_Basophilia', Cytoplasmic_Basophilia_array, pred_Cytoplasmic_Basophilia_array)
CV_prec = compute_and_print_metrics('Cytoplasmic_Vacuoles', Cytoplasmic_Vacuoles_array, pred_Cytoplasmic_Vacuoles_array)
# Calculate average precision
average_precision = np.mean([NC_prec[-1], NS_prec[-1], N_prec[-1], C_prec[-1], CB_prec[-1], CV_prec[-1]])
# Append results to metrics list
metrics.extend([NC_prec, NS_prec, N_prec, C_prec, CB_prec, CV_prec])
# ["Average Precision", "", "", "", "", average_precision]])
# Print table
headers = ["Attribute", "Accuracy", "Precision", "Recall", "F1"]
print(tabulate(metrics, headers=headers, tablefmt="grid"))
# Save the model if the current accuracy is better than the best accuracy
if average_precision > best_accuracy:
best_accuracy = average_precision
cell_model.train().to(device)
torch.save(cell_model.state_dict(), attribute_model_dir / f"best_weights_{best_accuracy}_{epoch}.pth")
epoch += 1
# Save the updated epoch and best accuracy to the file
with checkpoint_file_path.open('w') as f:
f.write(f"{epoch}\n{best_accuracy}")
cell_model.train().to(device)
torch.save(cell_model.state_dict(), attribute_model_dir / "last_weights.pth")
# Print speeds
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
if not training:
shape = (batch_size, 3, imgsz, imgsz)
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
# Plots
if plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
callbacks.run('on_val_end', nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
# Save JSON
if save_json and len(jdict):
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json')) # annotations
if not os.path.exists(anno_json):
anno_json = os.path.join(data['path'], 'annotations', 'instances_val2017.json')
pred_json = str(save_dir / f'{w}_predictions.json') # predictions
LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
with open(pred_json, 'w') as f:
json.dump(jdict, f)
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
check_requirements('pycocotools>=2.0.6')
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, 'bbox')
if is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
except Exception as e:
LOGGER.info(f'pycocotools unable to run: {e}')
# Return results
model.float() # for training
if not training:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
parser.add_argument('--batch-size', type=int, default=32, help='batch size')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
opt = parser.parse_args()
opt.data = check_yaml(opt.data) # check YAML
opt.save_json |= opt.data.endswith('coco.yaml')
opt.save_txt |= opt.save_hybrid
print_args(vars(opt))
return opt
def main(opt):
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
if opt.task in ('train', 'val', 'test'): # run normally
if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
LOGGER.info(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
if opt.save_hybrid:
LOGGER.info('WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone')
run(**vars(opt))
else:
weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
if opt.task == 'speed': # speed benchmarks
# python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
for opt.weights in weights:
run(**vars(opt), plots=False)
elif opt.task == 'study': # speed vs mAP benchmarks
# python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
for opt.weights in weights:
f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
for opt.imgsz in x: # img-size
LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
r, _, t = run(**vars(opt), plots=False)
y.append(r + t) # results and times
np.savetxt(f, y, fmt='%10.4g') # save
subprocess.run(['zip', '-r', 'study.zip', 'study_*.txt'])
plot_val_study(x=x) # plot
else:
raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
if __name__ == '__main__':
opt = parse_opt()
main(opt)