--- a +++ b/val.py @@ -0,0 +1,706 @@ +# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license +""" +Validate a trained YOLOv5 detection model on a detection dataset + +Usage: + $ python val.py --weights yolov5s.pt --data coco128.yaml --img 640 + +Usage - formats: + $ python val.py --weights yolov5s.pt # PyTorch + yolov5s.torchscript # TorchScript + yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn + yolov5s_openvino_model # OpenVINO + yolov5s.engine # TensorRT + yolov5s.mlmodel # CoreML (macOS-only) + yolov5s_saved_model # TensorFlow SavedModel + yolov5s.pb # TensorFlow GraphDef + yolov5s.tflite # TensorFlow Lite + yolov5s_edgetpu.tflite # TensorFlow Edge TPU + yolov5s_paddle_model # PaddlePaddle +""" + +import argparse +import json +import os +import subprocess +import sys +from pathlib import Path + +import numpy as np +import torch +from tqdm import tqdm +import csv +import pandas as pd +from tabulate import tabulate + + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[0] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +from models.common import DetectMultiBackend +from utils.callbacks import Callbacks +from utils.dataloaders import create_dataloader +from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements, + check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, + print_args, scale_boxes, xywh2xyxy,extract_roi_features, xyxy2xywh,get_object_level_feature_maps2,xywh_to_xyxy,get_fixed_xyxy) +from utils.metrics import ConfusionMatrix, ap_per_class, box_iou +from utils.plots import output_to_target, plot_images, plot_val_study +from utils.torch_utils import select_device, smart_inference_mode +from utils.my_model import MyCNN +import torch.nn.functional as F +import re +from torchvision.ops import roi_align +from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score + +# csv_file_path = 'data/WBC_dataset_sample/Attribute_model/attributes_prediction.csv' +# folder_name = 'data/WBC_dataset_sample/' + +# torch.backends.cudnn.enabled =False + +def save_one_txt(predn, save_conf, shape, file): + # Save one txt result + gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh + for *xyxy, conf, cls in predn.tolist(): + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh + line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format + with open(file, 'a') as f: + f.write(('%g ' * len(line)).rstrip() % line + '\n') + + +def save_one_json(predn, jdict, path, class_map): + # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} + image_id = int(path.stem) if path.stem.isnumeric() else path.stem + box = xyxy2xywh(predn[:, :4]) # xywh + box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner + for p, b in zip(predn.tolist(), box.tolist()): + jdict.append({ + 'image_id': image_id, + 'category_id': class_map[int(p[5])], + 'bbox': [round(x, 3) for x in b], + 'score': round(p[4], 5)}) + +def process_batch(detections, labels, iouv): + """ + Return correct prediction matrix. + + Arguments: + detections (array[N, 6]), x1, y1, x2, y2, conf, class + labels (array[M, 5]), class, x1, y1, x2, y2 + Returns: + correct (array[N, 10]), for 10 IoU levels + """ + correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool) + iou = box_iou(labels[:, 1:], detections[:, :4]) + correct_class = labels[:, 0:1] == detections[:, 5] + for i in range(len(iouv)): + x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match + if x[0].shape[0]: + matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou] + if x[0].shape[0] > 1: + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 1], return_index=True)[1]] + # matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 0], return_index=True)[1]] + correct[matches[:, 1].astype(int), i] = True + return torch.tensor(correct, dtype=torch.bool, device=iouv.device) + + +def my_process_batch(detections, labels, iouv): + """ + Return correct prediction matrix and top indices. + + Arguments: + detections (array[N, 6]), x1, y1, x2, y2, conf, class + labels (array[M, 5]), class, x1, y1, x2, y2 + iouv (tensor[10]), IoU thresholds + Returns: + correct (array[N, 10]), for 10 IoU levels + top_indices (tensor[M]), top IoU-gaining detection indices for each label + """ + correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool) + iou = box_iou(labels[:, 1:], detections[:, :4]) + correct_class = labels[:, 0:1] == detections[:, 5] + + top_indices = torch.argmax(iou, dim=1) + + for i in range(len(iouv)): + x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match + if x[0].shape[0]: + matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou] + if x[0].shape[0] > 1: + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 1], return_index=True)[1]] + # matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 0], return_index=True)[1]] + correct[matches[:, 1].astype(int), i] = True + + return torch.tensor(correct, dtype=torch.bool, device=iouv.device), top_indices + + + +@smart_inference_mode() +def run( + data, cell_model, + weights=None, # model.pt path(s) + batch_size=32, # batch size + imgsz=640, # inference size (pixels) + conf_thres=0.001, # confidence threshold + iou_thres=0.6, # NMS IoU threshold + max_det=300, # maximum detections per image + task='val', # train, val, test, speed or study + device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu + workers=8, # max dataloader workers (per RANK in DDP mode) + single_cls=False, # treat as single-class dataset + augment=False, # augmented inference + verbose=False, # verbose output + save_txt=False, # save results to *.txt + save_hybrid=False, # save label+prediction hybrid results to *.txt + save_conf=False, # save confidences in --save-txt labels + save_json=False, # save a COCO-JSON results file + project=ROOT / 'runs/val', # save to project/name + name='exp', # save to project/name + exist_ok=False, # existing project/name ok, do not increment + half=True, # use FP16 half-precision inference + dnn=False, # use OpenCV DNN for ONNX inference + model=None, + dataloader=None, + save_dir=Path(''), + plots=True, + callbacks=Callbacks(), + compute_loss=None + +): + # Initialize/load model and set device + training = model is not None + if training: # called by train.py + device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model + half &= device.type != 'cpu' # half precision only supported on CUDA + model.half() if half else model.float() + else: # called directly + device = select_device(device, batch_size=batch_size) + + # Directories + save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run + (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir + + # Load model + model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) + stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine + imgsz = check_img_size(imgsz, s=stride) # check image size + half = model.fp16 # FP16 supported on limited backends with CUDA + if engine: + batch_size = model.batch_size + else: + device = model.device + if not (pt or jit): + batch_size = 1 # export.py models default to batch-size 1 + LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') + + # Data + data = check_dataset(data) # check + + # Configure + model.eval() + cuda = device.type != 'cpu' + is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset + nc = 1 if single_cls else int(data['nc']) # number of classes + iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95 + niou = iouv.numel() + + # Dataloader + if not training: + if pt and not single_cls: # check --weights are trained on --data + ncm = model.model.nc + assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \ + f'classes). Pass correct combination of --weights and --data that are trained together.' + model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup + pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks + task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images + dataloader = create_dataloader(data[task], + imgsz, + batch_size, + stride, + single_cls, + pad=pad, + rect=rect, + workers=workers, + prefix=colorstr(f'{task}: '))[0] + + seen = 0 + confusion_matrix = ConfusionMatrix(nc=nc) + names = model.names if hasattr(model, 'names') else model.module.names # get class names + if isinstance(names, (list, tuple)): # old format + names = dict(enumerate(names)) + class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) + s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP50', 'mAP50-95') + tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 + dt = Profile(device=device), Profile(device=device), Profile(device=device) # profiling times + loss = torch.zeros(3, device=device) + jdict, stats, ap, ap_class = [], [], [], [] + callbacks.run('on_val_start') + pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar + + all_rows = [] + + for batch_i, (im, targets, paths, shapes) in enumerate(pbar): + epoch = 0 + callbacks.run('on_val_batch_start') + with dt[0]: + if cuda: + im = im.to(device, non_blocking=True) + targets = targets.to(device) + im = im.half() if half else im.float() # uint8 to fp16/32 + im /= 255 # 0 - 255 to 0.0 - 1.0 + nb, _, height, width = im.shape # batch size, channels, height, width + + # Inference + with dt[1]: + + (preds, train_out),int_feats = model(im) if compute_loss else (model(im, augment=augment), None) #I changed here + # cell_attribute_model= MyCNN().to(device) + # cell_attribute_model.eval().to(device) + + + # Loss + if compute_loss: + loss += compute_loss(train_out, targets[:,0:6])[1] # box, obj, cls # I changed here + + # NMS + attribute_targets = targets[:,7:13] + targets = targets[:, 0:6] # I changed here + targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels + lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling + with dt[2]: + preds = non_max_suppression(preds, + conf_thres, + iou_thres, + labels=lb, + multi_label=True, + agnostic=single_cls, + max_det=max_det) + + + # Metrics + for si, pred in enumerate(preds): + labels = targets[targets[:, 0] == si, 1:] + if (len(pred)>0): + boxes = torch.cat([si * torch.ones(pred.shape[0], 1).to(device), pred[:, 0:4].to(device)], dim=1) + + int_feats_p2 = int_feats[0][si].to(torch.float32).unsqueeze(0) + int_feats_p3 = int_feats[1][si].to(torch.float32).unsqueeze(0) + + torch.cuda.empty_cache() + + all_top_indices_cell_pred = [] + + for i in range(len(pred)): + + pred_tensor = pred[i, 0:4] + img_shape_tensor = torch.tensor([im.shape[2], im.shape[3],im.shape[2],im.shape[3]]).to(device) + + normalized_xyxy=pred_tensor / img_shape_tensor + p2_feature_shape_tensor = torch.tensor([int_feats[0][si].shape[1], int_feats[0][si].shape[2],int_feats[0][si].shape[1],int_feats[0][si].shape[2]]).to(device) # reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device) + p3_feature_shape_tensor = torch.tensor([int_feats[1][si].shape[1], int_feats[1][si].shape[2],int_feats[1][si].shape[1],int_feats[1][si].shape[2]]).to(device) # reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device) + + + p2_normalized_xyxy = normalized_xyxy*p2_feature_shape_tensor + p3_normalized_xyxy = normalized_xyxy*p3_feature_shape_tensor + + p2_x_min, p2_y_min, p2_x_max, p2_y_max = get_fixed_xyxy(p2_normalized_xyxy,int_feats_p2) + p3_x_min, p3_y_min, p3_x_max, p3_y_max = get_fixed_xyxy(p3_normalized_xyxy,int_feats_p3) + + p2_roi = torch.tensor([p2_x_min, p2_y_min, p2_x_max, p2_y_max], device=device).float() + p3_roi = torch.tensor([p3_x_min, p3_y_min, p3_x_max, p3_y_max], device=device).float() + + batch_index = torch.tensor([0], dtype=torch.float32, device = device) + + # Concatenate the batch index to the bounding box coordinates + p2_roi_with_batch_index = torch.cat([batch_index, p2_roi]) + p3_roi_with_batch_index = torch.cat([batch_index, p3_roi]) + + p2_resized_object = roi_align(int_feats_p2, p2_roi_with_batch_index.unsqueeze(0).to(device), output_size=(24, 30)) + p3_resized_object = roi_align(int_feats_p3, p3_roi_with_batch_index.unsqueeze(0).to(device), output_size=(24, 30)) + concat_box = torch.cat([p2_resized_object,p3_resized_object],dim=1) + + cell_model.eval().to(device) + + output_cell_prediction= cell_model(concat_box) + output_cell_prediction_prob = F.softmax(output_cell_prediction.view(6,2), dim=1) + top_indices_cell_pred = torch.argmax(output_cell_prediction_prob, dim=1) + all_top_indices_cell_pred.append(top_indices_cell_pred) + + + + nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions + path, shape = Path(paths[si]), shapes[si][0] + correct = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init + seen += 1 + + if npr == 0: + if nl: + stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0])) + if plots: + confusion_matrix.process_batch(detections=None, labels=labels[:, 0]) + continue + + # Predictions + if single_cls: + pred[:, 5] = 0 + predn = pred.clone() + scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred + + # Evaluate + if nl: + tbox = xywh2xyxy(labels[:, 1:5]) # target boxes + scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels + labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels + correct = process_batch(predn, labelsn, iouv) + _,max_iou_indices = my_process_batch(predn, labelsn, iouv) + max_iou_predicted_boxes=boxes[max_iou_indices] + attributes_prediction=[] + epoch = 0 + for i in range(len(max_iou_indices)): + + attributes_pred = all_top_indices_cell_pred[max_iou_indices[i]].detach().cpu() + attributes_prediction.append(attributes_pred) + + path_object = Path(path) + # Extracting the name + file_name = path_object.name + filenames =[] + + checkpoint_dir = ROOT / "Attribute_model" + checkpoint_file_path = checkpoint_dir / "checkpoint.txt" + + # Create directory if it doesn't exist + checkpoint_dir.mkdir(parents=True, exist_ok=True) + + # Check if the checkpoint file exists and read it, otherwise initialize values + if checkpoint_file_path.exists(): + with checkpoint_file_path.open('r') as f: + lines = f.readlines() + epoch = int(lines[0]) + best_accuracy = float(lines[1]) + else: + epoch = 0 + best_accuracy = 0.0 + + # Create the checkpoint file with default values if it doesn't exist + with checkpoint_file_path.open('w') as f: + f.write(f"{epoch}\n{best_accuracy}\n") + + # Initialize lists for each attribute + attribute_names = ['Nuclear Chromatin', 'Nuclear Shape', 'Nucleus', 'Cytoplasm', 'Cytoplasmic Basophilia', 'Cytoplasmic Vacuoles'] + + all_labels_list = [[] for _ in range(6)] + all_prediction_attributes_list = [[] for _ in range(6)] + + + + for i in range(len(attributes_prediction)): + count = 0 + label = attribute_targets[i].detach().cpu().int() + + if all(x != 2 for x in label): + filenames.append(file_name) + + # Append the label and prediction to the corresponding attribute list + for j in range(6): + all_labels_list[j].append(label[j].item()) + all_prediction_attributes_list[j].append(attributes_prediction[i][j].item()) + + # Combine data into rows + rows = zip(filenames, *all_labels_list, *all_prediction_attributes_list) + all_rows.extend(rows) + + + + if plots: + cnf_,indices= my_process_batch(predn, labelsn,iouv=iouv) + confusion_matrix.process_batch(predn, labelsn) + stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0])) # (correct, conf, pcls, tcls) + + # Save/log + if save_txt: + (save_dir / 'labels').mkdir(parents=True, exist_ok=True) + save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt') + if save_json: + save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary + callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) + + # Plot images + if plots and batch_i < 3: + plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names) # labels + plot_images(im, output_to_target(preds), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred + + callbacks.run('on_val_batch_end', batch_i, im, targets, paths, shapes, preds) + + + # Assuming ROOT is defined + # Initialize epoch and best accuracy + attribute_model_dir = ROOT / "Attribute_model" + checkpoint_file_path = attribute_model_dir / "checkpoint.txt" + attribute_names = ['Nuclear Chromatin', 'Nuclear Shape', 'Nucleus', 'Cytoplasm', 'Cytoplasmic Basophilia', 'Cytoplasmic Vacuoles'] + + # Create directory if it doesn't exist + attribute_model_dir.mkdir(parents=True, exist_ok=True) + + # Check if the checkpoint file exists and read it, otherwise initialize values + if checkpoint_file_path.exists(): + with checkpoint_file_path.open('r') as f: + lines = f.readlines() + epoch = int(lines[0]) + best_accuracy = float(lines[1]) + else: + epoch = 0 + best_accuracy = 0.0 + + # Write to the CSV file + csv_file_path_with_epoch = attribute_model_dir / f"{attribute_model_dir}_{epoch}.csv" + with open(csv_file_path_with_epoch, 'a', newline='') as csvfile: + csv_writer = csv.writer(csvfile) + + # Write header if the file is empty + if os.path.getsize(csv_file_path_with_epoch) == 0: + header = ['filename'] + [f'{attr}' for attr in attribute_names] + [f'pred_{attr}' for attr in attribute_names] + csv_writer.writerow(header) + + # Write all accumulated rows + csv_writer.writerows(all_rows) + + + # Read the CSV file into a DataFrame + df = pd.read_csv(csv_file_path_with_epoch, header=None, names=['filename', 'Nuclear Chromatin','Nuclear Shape','Nucleus','Cytoplasm','Cytoplasmic Basophilia','Cytoplasmic Vacuoles','pred_Nuclear Chromatin','pred_Nuclear Shape','pred_Nucleus','pred_Cytoplasm','pred_Cytoplasmic Basophilia','pred_Cytoplasmic Vacuoles']) + + # Drop the first row if it contains headers + df = df.iloc[1:] + + # Convert label columns to numeric, replace invalid literals with NaN + Nuclear_Chromatin_array = pd.to_numeric(df['Nuclear Chromatin'], errors='coerce') + Nuclear_Shape_array = pd.to_numeric(df['Nuclear Shape'], errors='coerce') + Nucleus_array = pd.to_numeric(df['Nucleus'], errors='coerce') + Cytoplasm_array = pd.to_numeric(df['Cytoplasm'], errors='coerce') + Cytoplasmic_Basophilia_array = pd.to_numeric(df['Cytoplasmic Basophilia'], errors='coerce') + Cytoplasmic_Vacuoles_array = pd.to_numeric(df['Cytoplasmic Vacuoles'], errors='coerce') + + pred_Nuclear_Chromatin_array = pd.to_numeric(df['pred_Nuclear Chromatin'], errors='coerce') + pred_Nuclear_Shape_array = pd.to_numeric(df['pred_Nuclear Shape'], errors='coerce') + pred_Nucleus_array = pd.to_numeric(df['pred_Nucleus'], errors='coerce') + pred_Cytoplasm_array = pd.to_numeric(df['pred_Cytoplasm'], errors='coerce') + pred_Cytoplasmic_Basophilia_array = pd.to_numeric(df['pred_Cytoplasmic Basophilia'], errors='coerce') + pred_Cytoplasmic_Vacuoles_array = pd.to_numeric(df['pred_Cytoplasmic Vacuoles'], errors='coerce') + + + # Exclude or replace non-numeric entries + Nuclear_Chromatin_array = Nuclear_Chromatin_array[~np.isnan(Nuclear_Chromatin_array)].astype(int) + Nuclear_Shape_array = Nuclear_Shape_array[~np.isnan(Nuclear_Shape_array)].astype(int) + Nucleus_array = Nucleus_array[~np.isnan(Nucleus_array)].astype(int) + Cytoplasm_array = Cytoplasm_array[~np.isnan(Cytoplasm_array)].astype(int) + Cytoplasmic_Basophilia_array = Cytoplasmic_Basophilia_array[~np.isnan(Cytoplasmic_Basophilia_array)].astype(int) + Cytoplasmic_Vacuoles_array = Cytoplasmic_Vacuoles_array[~np.isnan(Cytoplasmic_Vacuoles_array)].astype(int) + + # Exclude or replace non-numeric entries + pred_Nuclear_Chromatin_array = pred_Nuclear_Chromatin_array[~np.isnan(pred_Nuclear_Chromatin_array)].astype(int) + pred_Nuclear_Shape_array = pred_Nuclear_Shape_array[~np.isnan(pred_Nuclear_Shape_array)].astype(int) + pred_Nucleus_array = pred_Nucleus_array[~np.isnan(pred_Nucleus_array)].astype(int) + pred_Cytoplasm_array = pred_Cytoplasm_array[~np.isnan(pred_Cytoplasm_array)].astype(int) + pred_Cytoplasmic_Basophilia_array = pred_Cytoplasmic_Basophilia_array[~np.isnan(pred_Cytoplasmic_Basophilia_array)].astype(int) + pred_Cytoplasmic_Vacuoles_array = pred_Cytoplasmic_Vacuoles_array[~np.isnan(pred_Cytoplasmic_Vacuoles_array)].astype(int) + + + + def compute_and_print_metrics(attribute_name, true_labels, pred_labels): + # Exclude or replace non-numeric entries + true_labels = true_labels[~np.isnan(true_labels)].astype(int) + pred_labels = pred_labels[~np.isnan(pred_labels)].astype(int) + + # Compute metrics + accuracy = accuracy_score(true_labels, pred_labels) + precision = precision_score(true_labels, pred_labels) + recall = recall_score(true_labels, pred_labels) + f1 = f1_score(true_labels, pred_labels) + + return [attribute_name, accuracy, precision, recall, f1] + + + + # Compute metrics + stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy + if len(stats) and stats[0].any(): + tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) + ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95 + mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() + nt = np.bincount(stats[3].astype(int), minlength=nc) # number of targets per class + + # Print results + pf = '%22s' + '%11i' * 2 + '%11.3g' * 4 # print format + LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) + if nt.sum() == 0: + LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels') + + # Print results per class + if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): + for i, c in enumerate(ap_class): + LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) + + + # Example usage for each attribute + # Example usage for each attribute + metrics = [] + NC_prec = compute_and_print_metrics('Nuclear_Chromatin', Nuclear_Chromatin_array, pred_Nuclear_Chromatin_array) + NS_prec = compute_and_print_metrics('Nuclear_Shape', Nuclear_Shape_array, pred_Nuclear_Shape_array) + N_prec = compute_and_print_metrics('Nucleus', Nucleus_array, pred_Nucleus_array) + C_prec = compute_and_print_metrics('Cytoplasm', Cytoplasm_array, pred_Cytoplasm_array) + CB_prec = compute_and_print_metrics('Cytoplasmic_Basophilia', Cytoplasmic_Basophilia_array, pred_Cytoplasmic_Basophilia_array) + CV_prec = compute_and_print_metrics('Cytoplasmic_Vacuoles', Cytoplasmic_Vacuoles_array, pred_Cytoplasmic_Vacuoles_array) + + # Calculate average precision + average_precision = np.mean([NC_prec[-1], NS_prec[-1], N_prec[-1], C_prec[-1], CB_prec[-1], CV_prec[-1]]) + + # Append results to metrics list + metrics.extend([NC_prec, NS_prec, N_prec, C_prec, CB_prec, CV_prec]) + # ["Average Precision", "", "", "", "", average_precision]]) + + # Print table + headers = ["Attribute", "Accuracy", "Precision", "Recall", "F1"] + print(tabulate(metrics, headers=headers, tablefmt="grid")) + + + # Save the model if the current accuracy is better than the best accuracy + if average_precision > best_accuracy: + best_accuracy = average_precision + cell_model.train().to(device) + torch.save(cell_model.state_dict(), attribute_model_dir / f"best_weights_{best_accuracy}_{epoch}.pth") + + epoch += 1 + + # Save the updated epoch and best accuracy to the file + with checkpoint_file_path.open('w') as f: + f.write(f"{epoch}\n{best_accuracy}") + + cell_model.train().to(device) + torch.save(cell_model.state_dict(), attribute_model_dir / "last_weights.pth") + + # Print speeds + t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image + if not training: + shape = (batch_size, 3, imgsz, imgsz) + LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) + + # Plots + if plots: + confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) + callbacks.run('on_val_end', nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix) + + # Save JSON + if save_json and len(jdict): + w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights + anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json')) # annotations + if not os.path.exists(anno_json): + anno_json = os.path.join(data['path'], 'annotations', 'instances_val2017.json') + pred_json = str(save_dir / f'{w}_predictions.json') # predictions + LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...') + with open(pred_json, 'w') as f: + json.dump(jdict, f) + + try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb + check_requirements('pycocotools>=2.0.6') + from pycocotools.coco import COCO + from pycocotools.cocoeval import COCOeval + + anno = COCO(anno_json) # init annotations api + pred = anno.loadRes(pred_json) # init predictions api + eval = COCOeval(anno, pred, 'bbox') + if is_coco: + eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # image IDs to evaluate + eval.evaluate() + eval.accumulate() + eval.summarize() + map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) + except Exception as e: + LOGGER.info(f'pycocotools unable to run: {e}') + + # Return results + model.float() # for training + if not training: + s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' + LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") + maps = np.zeros(nc) + map + for i, c in enumerate(ap_class): + maps[c] = ap[i] + return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') + parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)') + parser.add_argument('--batch-size', type=int, default=32, help='batch size') + parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') + parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold') + parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold') + parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image') + parser.add_argument('--task', default='val', help='train, val, test, speed or study') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') + parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') + parser.add_argument('--augment', action='store_true', help='augmented inference') + parser.add_argument('--verbose', action='store_true', help='report mAP by class') + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') + parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') + parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') + parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file') + parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name') + parser.add_argument('--name', default='exp', help='save to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') + parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') + opt = parser.parse_args() + opt.data = check_yaml(opt.data) # check YAML + opt.save_json |= opt.data.endswith('coco.yaml') + opt.save_txt |= opt.save_hybrid + print_args(vars(opt)) + return opt + + +def main(opt): + check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) + + if opt.task in ('train', 'val', 'test'): # run normally + if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466 + LOGGER.info(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results') + if opt.save_hybrid: + LOGGER.info('WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone') + run(**vars(opt)) + + else: + weights = opt.weights if isinstance(opt.weights, list) else [opt.weights] + opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results + if opt.task == 'speed': # speed benchmarks + # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt... + opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False + for opt.weights in weights: + run(**vars(opt), plots=False) + + elif opt.task == 'study': # speed vs mAP benchmarks + # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt... + for opt.weights in weights: + f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to + x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis + for opt.imgsz in x: # img-size + LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...') + r, _, t = run(**vars(opt), plots=False) + y.append(r + t) # results and times + np.savetxt(f, y, fmt='%10.4g') # save + subprocess.run(['zip', '-r', 'study.zip', 'study_*.txt']) + plot_val_study(x=x) # plot + else: + raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")') + + +if __name__ == '__main__': + opt = parse_opt() + main(opt)