Diff of /val.py [000000] .. [190ca4]

Switch to side-by-side view

--- a
+++ b/val.py
@@ -0,0 +1,706 @@
+# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
+"""
+Validate a trained YOLOv5 detection model on a detection dataset
+
+Usage:
+    $ python val.py --weights yolov5s.pt --data coco128.yaml --img 640
+
+Usage - formats:
+    $ python val.py --weights yolov5s.pt                 # PyTorch
+                              yolov5s.torchscript        # TorchScript
+                              yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                              yolov5s_openvino_model     # OpenVINO
+                              yolov5s.engine             # TensorRT
+                              yolov5s.mlmodel            # CoreML (macOS-only)
+                              yolov5s_saved_model        # TensorFlow SavedModel
+                              yolov5s.pb                 # TensorFlow GraphDef
+                              yolov5s.tflite             # TensorFlow Lite
+                              yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
+                              yolov5s_paddle_model       # PaddlePaddle
+"""
+
+import argparse
+import json
+import os
+import subprocess
+import sys
+from pathlib import Path
+
+import numpy as np
+import torch
+from tqdm import tqdm
+import csv
+import pandas as pd
+from tabulate import tabulate
+
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import DetectMultiBackend
+from utils.callbacks import Callbacks
+from utils.dataloaders import create_dataloader
+from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size, check_requirements,
+                           check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression,
+                           print_args, scale_boxes, xywh2xyxy,extract_roi_features, xyxy2xywh,get_object_level_feature_maps2,xywh_to_xyxy,get_fixed_xyxy)
+from utils.metrics import ConfusionMatrix, ap_per_class, box_iou
+from utils.plots import output_to_target, plot_images, plot_val_study
+from utils.torch_utils import select_device, smart_inference_mode
+from utils.my_model import MyCNN
+import torch.nn.functional as F
+import re
+from torchvision.ops import roi_align
+from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
+
+# csv_file_path = 'data/WBC_dataset_sample/Attribute_model/attributes_prediction.csv'
+# folder_name = 'data/WBC_dataset_sample/'
+
+# torch.backends.cudnn.enabled =False
+
+def save_one_txt(predn, save_conf, shape, file):
+    # Save one txt result
+    gn = torch.tensor(shape)[[1, 0, 1, 0]]  # normalization gain whwh
+    for *xyxy, conf, cls in predn.tolist():
+        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
+        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
+        with open(file, 'a') as f:
+            f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+
+def save_one_json(predn, jdict, path, class_map):
+    # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
+    image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+    box = xyxy2xywh(predn[:, :4])  # xywh
+    box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
+    for p, b in zip(predn.tolist(), box.tolist()):
+        jdict.append({
+            'image_id': image_id,
+            'category_id': class_map[int(p[5])],
+            'bbox': [round(x, 3) for x in b],
+            'score': round(p[4], 5)})
+
+def process_batch(detections, labels, iouv):
+    """
+    Return correct prediction matrix.
+
+    Arguments:
+        detections (array[N, 6]), x1, y1, x2, y2, conf, class
+        labels (array[M, 5]), class, x1, y1, x2, y2
+    Returns:
+        correct (array[N, 10]), for 10 IoU levels
+    """
+    correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+    iou = box_iou(labels[:, 1:], detections[:, :4])
+    correct_class = labels[:, 0:1] == detections[:, 5]
+    for i in range(len(iouv)):
+        x = torch.where((iou >= iouv[i]) & correct_class)  # IoU > threshold and classes match
+        if x[0].shape[0]:
+            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()  # [label, detect, iou]
+            if x[0].shape[0] > 1:
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+                # matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+            correct[matches[:, 1].astype(int), i] = True
+    return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
+
+
+def my_process_batch(detections, labels, iouv):
+    """
+    Return correct prediction matrix and top indices.
+
+    Arguments:
+        detections (array[N, 6]), x1, y1, x2, y2, conf, class
+        labels (array[M, 5]), class, x1, y1, x2, y2
+        iouv (tensor[10]), IoU thresholds
+    Returns:
+        correct (array[N, 10]), for 10 IoU levels
+        top_indices (tensor[M]), top IoU-gaining detection indices for each label
+    """
+    correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
+    iou = box_iou(labels[:, 1:], detections[:, :4])
+    correct_class = labels[:, 0:1] == detections[:, 5]
+    
+    top_indices = torch.argmax(iou, dim=1)
+
+    for i in range(len(iouv)):
+        x = torch.where((iou >= iouv[i]) & correct_class)  # IoU > threshold and classes match
+        if x[0].shape[0]:
+            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()  # [label, detect, iou]
+            if x[0].shape[0] > 1:
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+                # matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+            correct[matches[:, 1].astype(int), i] = True
+
+    return torch.tensor(correct, dtype=torch.bool, device=iouv.device), top_indices
+
+
+
+@smart_inference_mode()
+def run(
+        data, cell_model,
+        weights=None,  # model.pt path(s)
+        batch_size=32,  # batch size
+        imgsz=640,  # inference size (pixels)
+        conf_thres=0.001,  # confidence threshold
+        iou_thres=0.6,  # NMS IoU threshold
+        max_det=300,  # maximum detections per image
+        task='val',  # train, val, test, speed or study
+        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        workers=8,  # max dataloader workers (per RANK in DDP mode)
+        single_cls=False,  # treat as single-class dataset
+        augment=False,  # augmented inference
+        verbose=False,  # verbose output
+        save_txt=False,  # save results to *.txt
+        save_hybrid=False,  # save label+prediction hybrid results to *.txt
+        save_conf=False,  # save confidences in --save-txt labels
+        save_json=False,  # save a COCO-JSON results file
+        project=ROOT / 'runs/val',  # save to project/name
+        name='exp',  # save to project/name
+        exist_ok=False,  # existing project/name ok, do not increment
+        half=True,  # use FP16 half-precision inference
+        dnn=False,  # use OpenCV DNN for ONNX inference
+        model=None,
+        dataloader=None,
+        save_dir=Path(''),
+        plots=True,
+        callbacks=Callbacks(),
+        compute_loss=None
+       
+):
+    # Initialize/load model and set device
+    training = model is not None
+    if training:  # called by train.py
+        device, pt, jit, engine = next(model.parameters()).device, True, False, False  # get model device, PyTorch model
+        half &= device.type != 'cpu'  # half precision only supported on CUDA
+        model.half() if half else model.float()
+    else:  # called directly
+        device = select_device(device, batch_size=batch_size)
+
+        # Directories
+        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+        # Load model
+        model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
+        stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
+        imgsz = check_img_size(imgsz, s=stride)  # check image size
+        half = model.fp16  # FP16 supported on limited backends with CUDA
+        if engine:
+            batch_size = model.batch_size
+        else:
+            device = model.device
+            if not (pt or jit):
+                batch_size = 1  # export.py models default to batch-size 1
+                LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
+
+        # Data
+        data = check_dataset(data)  # check
+
+    # Configure
+    model.eval()
+    cuda = device.type != 'cpu'
+    is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt')  # COCO dataset
+    nc = 1 if single_cls else int(data['nc'])  # number of classes
+    iouv = torch.linspace(0.5, 0.95, 10, device=device)  # iou vector for mAP@0.5:0.95
+    niou = iouv.numel()
+
+    # Dataloader
+    if not training:
+        if pt and not single_cls:  # check --weights are trained on --data
+            ncm = model.model.nc
+            assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
+                              f'classes). Pass correct combination of --weights and --data that are trained together.'
+        model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz))  # warmup
+        pad, rect = (0.0, False) if task == 'speed' else (0.5, pt)  # square inference for benchmarks
+        task = task if task in ('train', 'val', 'test') else 'val'  # path to train/val/test images
+        dataloader = create_dataloader(data[task],
+                                       imgsz,
+                                       batch_size,
+                                       stride,
+                                       single_cls,
+                                       pad=pad,
+                                       rect=rect,
+                                       workers=workers,
+                                       prefix=colorstr(f'{task}: '))[0]
+
+    seen = 0
+    confusion_matrix = ConfusionMatrix(nc=nc)
+    names = model.names if hasattr(model, 'names') else model.module.names  # get class names
+    if isinstance(names, (list, tuple)):  # old format
+        names = dict(enumerate(names))
+    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+    s = ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'P', 'R', 'mAP50', 'mAP50-95')
+    tp, fp, p, r, f1, mp, mr, map50, ap50, map = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
+    dt = Profile(device=device), Profile(device=device), Profile(device=device)  # profiling times
+    loss = torch.zeros(3, device=device)
+    jdict, stats, ap, ap_class = [], [], [], []
+    callbacks.run('on_val_start')
+    pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT)  # progress bar
+
+    all_rows = []
+
+    for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
+        epoch = 0
+        callbacks.run('on_val_batch_start')
+        with dt[0]:
+            if cuda:
+                im = im.to(device, non_blocking=True)
+                targets = targets.to(device)
+            im = im.half() if half else im.float()  # uint8 to fp16/32
+            im /= 255  # 0 - 255 to 0.0 - 1.0
+            nb, _, height, width = im.shape  # batch size, channels, height, width
+
+        # Inference
+        with dt[1]:
+
+            (preds, train_out),int_feats = model(im) if compute_loss else (model(im, augment=augment), None) #I changed here
+            # cell_attribute_model= MyCNN().to(device)
+            # cell_attribute_model.eval().to(device)
+            
+
+        # Loss
+        if compute_loss:
+            loss += compute_loss(train_out, targets[:,0:6])[1]  # box, obj, cls # I changed here
+
+        # NMS
+        attribute_targets = targets[:,7:13]
+        targets = targets[:, 0:6] # I changed here
+        targets[:, 2:] *= torch.tensor((width, height, width, height), device=device)  # to pixels
+        lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
+        with dt[2]:
+            preds = non_max_suppression(preds,
+                                        conf_thres,
+                                        iou_thres,
+                                        labels=lb,
+                                        multi_label=True,
+                                        agnostic=single_cls,
+                                        max_det=max_det)
+
+        
+        # Metrics
+        for si, pred in enumerate(preds):
+            labels = targets[targets[:, 0] == si, 1:]
+            if (len(pred)>0):
+                boxes = torch.cat([si * torch.ones(pred.shape[0], 1).to(device), pred[:, 0:4].to(device)], dim=1)
+
+                int_feats_p2 = int_feats[0][si].to(torch.float32).unsqueeze(0)
+                int_feats_p3 = int_feats[1][si].to(torch.float32).unsqueeze(0)
+
+                torch.cuda.empty_cache()
+
+                all_top_indices_cell_pred = []
+
+                for i in range(len(pred)):
+
+                    pred_tensor = pred[i, 0:4]
+                    img_shape_tensor = torch.tensor([im.shape[2], im.shape[3],im.shape[2],im.shape[3]]).to(device)
+
+                    normalized_xyxy=pred_tensor / img_shape_tensor
+                    p2_feature_shape_tensor = torch.tensor([int_feats[0][si].shape[1], int_feats[0][si].shape[2],int_feats[0][si].shape[1],int_feats[0][si].shape[2]]).to(device)                        # reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device)
+                    p3_feature_shape_tensor = torch.tensor([int_feats[1][si].shape[1], int_feats[1][si].shape[2],int_feats[1][si].shape[1],int_feats[1][si].shape[2]]).to(device)             # reduce_channels_layer = torch.nn.Conv2d(1280, 250, kernel_size=1).to(device)
+
+                    
+                    p2_normalized_xyxy = normalized_xyxy*p2_feature_shape_tensor
+                    p3_normalized_xyxy = normalized_xyxy*p3_feature_shape_tensor
+
+                    p2_x_min, p2_y_min, p2_x_max, p2_y_max = get_fixed_xyxy(p2_normalized_xyxy,int_feats_p2)
+                    p3_x_min, p3_y_min, p3_x_max, p3_y_max = get_fixed_xyxy(p3_normalized_xyxy,int_feats_p3)
+
+                    p2_roi = torch.tensor([p2_x_min, p2_y_min, p2_x_max, p2_y_max], device=device).float() 
+                    p3_roi = torch.tensor([p3_x_min, p3_y_min, p3_x_max, p3_y_max], device=device).float() 
+
+                    batch_index = torch.tensor([0], dtype=torch.float32, device = device)
+
+                    # Concatenate the batch index to the bounding box coordinates
+                    p2_roi_with_batch_index = torch.cat([batch_index, p2_roi])
+                    p3_roi_with_batch_index = torch.cat([batch_index, p3_roi])
+
+                    p2_resized_object = roi_align(int_feats_p2, p2_roi_with_batch_index.unsqueeze(0).to(device), output_size=(24, 30))
+                    p3_resized_object = roi_align(int_feats_p3, p3_roi_with_batch_index.unsqueeze(0).to(device), output_size=(24, 30))
+                    concat_box = torch.cat([p2_resized_object,p3_resized_object],dim=1)
+
+                    cell_model.eval().to(device)
+
+                    output_cell_prediction= cell_model(concat_box)
+                    output_cell_prediction_prob = F.softmax(output_cell_prediction.view(6,2), dim=1)
+                    top_indices_cell_pred = torch.argmax(output_cell_prediction_prob, dim=1)
+                    all_top_indices_cell_pred.append(top_indices_cell_pred)
+
+
+
+            nl, npr = labels.shape[0], pred.shape[0]  # number of labels, predictions
+            path, shape = Path(paths[si]), shapes[si][0]
+            correct = torch.zeros(npr, niou, dtype=torch.bool, device=device)  # init
+            seen += 1
+
+            if npr == 0:
+                if nl:
+                    stats.append((correct, *torch.zeros((2, 0), device=device), labels[:, 0]))
+                    if plots:
+                        confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
+                continue
+
+            # Predictions
+            if single_cls:
+                pred[:, 5] = 0
+            predn = pred.clone()
+            scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred
+
+            # Evaluate
+            if nl:
+                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
+                scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
+                labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
+                correct = process_batch(predn, labelsn, iouv)
+                _,max_iou_indices = my_process_batch(predn, labelsn, iouv)
+                max_iou_predicted_boxes=boxes[max_iou_indices]
+                attributes_prediction=[]
+                epoch = 0
+                for i in range(len(max_iou_indices)):
+
+                    attributes_pred = all_top_indices_cell_pred[max_iou_indices[i]].detach().cpu()
+                    attributes_prediction.append(attributes_pred)
+                
+                path_object = Path(path)
+                # Extracting the name
+                file_name = path_object.name
+                filenames =[]
+
+                checkpoint_dir = ROOT / "Attribute_model"
+                checkpoint_file_path = checkpoint_dir / "checkpoint.txt"
+
+                # Create directory if it doesn't exist
+                checkpoint_dir.mkdir(parents=True, exist_ok=True)
+
+                # Check if the checkpoint file exists and read it, otherwise initialize values
+                if checkpoint_file_path.exists():
+                    with checkpoint_file_path.open('r') as f:
+                        lines = f.readlines()
+                        epoch = int(lines[0])
+                        best_accuracy = float(lines[1])
+                else:
+                    epoch = 0
+                    best_accuracy = 0.0
+
+                    # Create the checkpoint file with default values if it doesn't exist
+                    with checkpoint_file_path.open('w') as f:
+                        f.write(f"{epoch}\n{best_accuracy}\n")
+
+                # Initialize lists for each attribute
+                attribute_names = ['Nuclear Chromatin', 'Nuclear Shape', 'Nucleus', 'Cytoplasm', 'Cytoplasmic Basophilia', 'Cytoplasmic Vacuoles']
+
+                all_labels_list = [[] for _ in range(6)]
+                all_prediction_attributes_list = [[] for _ in range(6)]
+  
+
+
+                for i in range(len(attributes_prediction)):
+                    count = 0
+                    label = attribute_targets[i].detach().cpu().int()
+
+                    if all(x != 2 for x in label):
+                        filenames.append(file_name)
+
+                        # Append the label and prediction to the corresponding attribute list
+                        for j in range(6):
+                            all_labels_list[j].append(label[j].item())
+                            all_prediction_attributes_list[j].append(attributes_prediction[i][j].item())
+
+                # Combine data into rows
+                rows = zip(filenames, *all_labels_list, *all_prediction_attributes_list)
+                all_rows.extend(rows)
+
+              
+
+                if plots:
+                    cnf_,indices= my_process_batch(predn, labelsn,iouv=iouv)
+                    confusion_matrix.process_batch(predn, labelsn)
+            stats.append((correct, pred[:, 4], pred[:, 5], labels[:, 0]))  # (correct, conf, pcls, tcls)
+
+            # Save/log
+            if save_txt:
+                (save_dir / 'labels').mkdir(parents=True, exist_ok=True)
+                save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
+            if save_json:
+                save_one_json(predn, jdict, path, class_map)  # append to COCO-JSON dictionary
+            callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
+
+        # Plot images
+        if plots and batch_i < 3:
+            plot_images(im, targets, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)  # labels
+            plot_images(im, output_to_target(preds), paths, save_dir / f'val_batch{batch_i}_pred.jpg', names)  # pred
+
+        callbacks.run('on_val_batch_end', batch_i, im, targets, paths, shapes, preds)
+
+
+        # Assuming ROOT is defined
+    # Initialize epoch and best accuracy
+    attribute_model_dir = ROOT / "Attribute_model"
+    checkpoint_file_path = attribute_model_dir / "checkpoint.txt"
+    attribute_names = ['Nuclear Chromatin', 'Nuclear Shape', 'Nucleus', 'Cytoplasm', 'Cytoplasmic Basophilia', 'Cytoplasmic Vacuoles']
+
+    # Create directory if it doesn't exist
+    attribute_model_dir.mkdir(parents=True, exist_ok=True)
+
+    # Check if the checkpoint file exists and read it, otherwise initialize values
+    if checkpoint_file_path.exists():
+        with checkpoint_file_path.open('r') as f:
+            lines = f.readlines()
+            epoch = int(lines[0])
+            best_accuracy = float(lines[1])
+    else:
+        epoch = 0
+        best_accuracy = 0.0
+
+    # Write to the CSV file
+    csv_file_path_with_epoch = attribute_model_dir / f"{attribute_model_dir}_{epoch}.csv"
+    with open(csv_file_path_with_epoch, 'a', newline='') as csvfile:
+        csv_writer = csv.writer(csvfile)
+
+        # Write header if the file is empty
+        if os.path.getsize(csv_file_path_with_epoch) == 0:
+            header = ['filename'] + [f'{attr}' for attr in attribute_names] + [f'pred_{attr}' for attr in attribute_names]
+            csv_writer.writerow(header)
+
+        # Write all accumulated rows
+        csv_writer.writerows(all_rows)
+    
+
+    # Read the CSV file into a DataFrame
+    df = pd.read_csv(csv_file_path_with_epoch, header=None, names=['filename', 'Nuclear Chromatin','Nuclear Shape','Nucleus','Cytoplasm','Cytoplasmic Basophilia','Cytoplasmic Vacuoles','pred_Nuclear Chromatin','pred_Nuclear Shape','pred_Nucleus','pred_Cytoplasm','pred_Cytoplasmic Basophilia','pred_Cytoplasmic Vacuoles'])
+
+    # Drop the first row if it contains headers
+    df = df.iloc[1:]
+
+    # Convert label columns to numeric, replace invalid literals with NaN
+    Nuclear_Chromatin_array = pd.to_numeric(df['Nuclear Chromatin'], errors='coerce')
+    Nuclear_Shape_array = pd.to_numeric(df['Nuclear Shape'], errors='coerce')
+    Nucleus_array = pd.to_numeric(df['Nucleus'], errors='coerce')
+    Cytoplasm_array = pd.to_numeric(df['Cytoplasm'], errors='coerce')
+    Cytoplasmic_Basophilia_array = pd.to_numeric(df['Cytoplasmic Basophilia'], errors='coerce')
+    Cytoplasmic_Vacuoles_array = pd.to_numeric(df['Cytoplasmic Vacuoles'], errors='coerce')
+
+    pred_Nuclear_Chromatin_array = pd.to_numeric(df['pred_Nuclear Chromatin'], errors='coerce')
+    pred_Nuclear_Shape_array = pd.to_numeric(df['pred_Nuclear Shape'], errors='coerce')
+    pred_Nucleus_array = pd.to_numeric(df['pred_Nucleus'], errors='coerce')
+    pred_Cytoplasm_array = pd.to_numeric(df['pred_Cytoplasm'], errors='coerce')
+    pred_Cytoplasmic_Basophilia_array = pd.to_numeric(df['pred_Cytoplasmic Basophilia'], errors='coerce')
+    pred_Cytoplasmic_Vacuoles_array = pd.to_numeric(df['pred_Cytoplasmic Vacuoles'], errors='coerce')
+
+
+    # Exclude or replace non-numeric entries
+    Nuclear_Chromatin_array = Nuclear_Chromatin_array[~np.isnan(Nuclear_Chromatin_array)].astype(int)
+    Nuclear_Shape_array = Nuclear_Shape_array[~np.isnan(Nuclear_Shape_array)].astype(int)
+    Nucleus_array = Nucleus_array[~np.isnan(Nucleus_array)].astype(int)
+    Cytoplasm_array = Cytoplasm_array[~np.isnan(Cytoplasm_array)].astype(int)
+    Cytoplasmic_Basophilia_array = Cytoplasmic_Basophilia_array[~np.isnan(Cytoplasmic_Basophilia_array)].astype(int)
+    Cytoplasmic_Vacuoles_array = Cytoplasmic_Vacuoles_array[~np.isnan(Cytoplasmic_Vacuoles_array)].astype(int)
+
+    # Exclude or replace non-numeric entries
+    pred_Nuclear_Chromatin_array = pred_Nuclear_Chromatin_array[~np.isnan(pred_Nuclear_Chromatin_array)].astype(int)
+    pred_Nuclear_Shape_array = pred_Nuclear_Shape_array[~np.isnan(pred_Nuclear_Shape_array)].astype(int)
+    pred_Nucleus_array = pred_Nucleus_array[~np.isnan(pred_Nucleus_array)].astype(int)
+    pred_Cytoplasm_array = pred_Cytoplasm_array[~np.isnan(pred_Cytoplasm_array)].astype(int)
+    pred_Cytoplasmic_Basophilia_array = pred_Cytoplasmic_Basophilia_array[~np.isnan(pred_Cytoplasmic_Basophilia_array)].astype(int)
+    pred_Cytoplasmic_Vacuoles_array = pred_Cytoplasmic_Vacuoles_array[~np.isnan(pred_Cytoplasmic_Vacuoles_array)].astype(int)
+
+
+
+    def compute_and_print_metrics(attribute_name, true_labels, pred_labels):
+        # Exclude or replace non-numeric entries
+        true_labels = true_labels[~np.isnan(true_labels)].astype(int)
+        pred_labels = pred_labels[~np.isnan(pred_labels)].astype(int)
+
+        # Compute metrics
+        accuracy = accuracy_score(true_labels, pred_labels)
+        precision = precision_score(true_labels, pred_labels)
+        recall = recall_score(true_labels, pred_labels)
+        f1 = f1_score(true_labels, pred_labels)
+
+        return [attribute_name, accuracy, precision, recall, f1]
+
+
+
+    # Compute metrics
+    stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)]  # to numpy
+    if len(stats) and stats[0].any():
+        tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
+        ap50, ap = ap[:, 0], ap.mean(1)  # AP@0.5, AP@0.5:0.95
+        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
+    nt = np.bincount(stats[3].astype(int), minlength=nc)  # number of targets per class
+
+    # Print results
+    pf = '%22s' + '%11i' * 2 + '%11.3g' * 4  # print format
+    LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
+    if nt.sum() == 0:
+        LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
+
+    # Print results per class
+    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+        for i, c in enumerate(ap_class):
+            LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
+
+
+        # Example usage for each attribute
+    # Example usage for each attribute
+    metrics = []
+    NC_prec = compute_and_print_metrics('Nuclear_Chromatin', Nuclear_Chromatin_array, pred_Nuclear_Chromatin_array)
+    NS_prec = compute_and_print_metrics('Nuclear_Shape', Nuclear_Shape_array, pred_Nuclear_Shape_array)
+    N_prec = compute_and_print_metrics('Nucleus', Nucleus_array, pred_Nucleus_array)
+    C_prec = compute_and_print_metrics('Cytoplasm', Cytoplasm_array, pred_Cytoplasm_array)
+    CB_prec = compute_and_print_metrics('Cytoplasmic_Basophilia', Cytoplasmic_Basophilia_array, pred_Cytoplasmic_Basophilia_array)
+    CV_prec = compute_and_print_metrics('Cytoplasmic_Vacuoles', Cytoplasmic_Vacuoles_array, pred_Cytoplasmic_Vacuoles_array)
+
+    # Calculate average precision
+    average_precision = np.mean([NC_prec[-1], NS_prec[-1], N_prec[-1], C_prec[-1], CB_prec[-1], CV_prec[-1]])
+
+    # Append results to metrics list
+    metrics.extend([NC_prec, NS_prec, N_prec, C_prec, CB_prec, CV_prec])
+                    # ["Average Precision", "", "", "", "", average_precision]])
+
+    # Print table
+    headers = ["Attribute", "Accuracy", "Precision", "Recall", "F1"]
+    print(tabulate(metrics, headers=headers, tablefmt="grid"))    
+
+
+    # Save the model if the current accuracy is better than the best accuracy
+    if average_precision > best_accuracy:
+        best_accuracy = average_precision
+        cell_model.train().to(device)
+        torch.save(cell_model.state_dict(), attribute_model_dir / f"best_weights_{best_accuracy}_{epoch}.pth")
+
+    epoch += 1
+
+    # Save the updated epoch and best accuracy to the file
+    with checkpoint_file_path.open('w') as f:
+        f.write(f"{epoch}\n{best_accuracy}")
+
+    cell_model.train().to(device)
+    torch.save(cell_model.state_dict(), attribute_model_dir / "last_weights.pth")        
+
+    # Print speeds
+    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
+    if not training:
+        shape = (batch_size, 3, imgsz, imgsz)
+        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
+
+    # Plots
+    if plots:
+        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+        callbacks.run('on_val_end', nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
+
+    # Save JSON
+    if save_json and len(jdict):
+        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
+        anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json'))  # annotations
+        if not os.path.exists(anno_json):
+            anno_json = os.path.join(data['path'], 'annotations', 'instances_val2017.json')
+        pred_json = str(save_dir / f'{w}_predictions.json')  # predictions
+        LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
+        with open(pred_json, 'w') as f:
+            json.dump(jdict, f)
+
+        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+            check_requirements('pycocotools>=2.0.6')
+            from pycocotools.coco import COCO
+            from pycocotools.cocoeval import COCOeval
+
+            anno = COCO(anno_json)  # init annotations api
+            pred = anno.loadRes(pred_json)  # init predictions api
+            eval = COCOeval(anno, pred, 'bbox')
+            if is_coco:
+                eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files]  # image IDs to evaluate
+            eval.evaluate()
+            eval.accumulate()
+            eval.summarize()
+            map, map50 = eval.stats[:2]  # update results (mAP@0.5:0.95, mAP@0.5)
+        except Exception as e:
+            LOGGER.info(f'pycocotools unable to run: {e}')
+
+    # Return results
+    model.float()  # for training
+    if not training:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    maps = np.zeros(nc) + map
+    for i, c in enumerate(ap_class):
+        maps[c] = ap[i]
+    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
+    parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+    parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
+    parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
+    parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
+    parser.add_argument('--task', default='val', help='train, val, test, speed or study')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+    parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+    parser.add_argument('--augment', action='store_true', help='augmented inference')
+    parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+    parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
+    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+    parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
+    parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
+    parser.add_argument('--name', default='exp', help='save to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+    opt = parser.parse_args()
+    opt.data = check_yaml(opt.data)  # check YAML
+    opt.save_json |= opt.data.endswith('coco.yaml')
+    opt.save_txt |= opt.save_hybrid
+    print_args(vars(opt))
+    return opt
+
+
+def main(opt):
+    check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
+
+    if opt.task in ('train', 'val', 'test'):  # run normally
+        if opt.conf_thres > 0.001:  # https://github.com/ultralytics/yolov5/issues/1466
+            LOGGER.info(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
+        if opt.save_hybrid:
+            LOGGER.info('WARNING ⚠️ --save-hybrid will return high mAP from hybrid labels, not from predictions alone')
+        run(**vars(opt))
+
+    else:
+        weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+        opt.half = torch.cuda.is_available() and opt.device != 'cpu'  # FP16 for fastest results
+        if opt.task == 'speed':  # speed benchmarks
+            # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
+            opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+            for opt.weights in weights:
+                run(**vars(opt), plots=False)
+
+        elif opt.task == 'study':  # speed vs mAP benchmarks
+            # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
+            for opt.weights in weights:
+                f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt'  # filename to save to
+                x, y = list(range(256, 1536 + 128, 128)), []  # x axis (image sizes), y axis
+                for opt.imgsz in x:  # img-size
+                    LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
+                    r, _, t = run(**vars(opt), plots=False)
+                    y.append(r + t)  # results and times
+                np.savetxt(f, y, fmt='%10.4g')  # save
+            subprocess.run(['zip', '-r', 'study.zip', 'study_*.txt'])
+            plot_val_study(x=x)  # plot
+        else:
+            raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
+
+
+if __name__ == '__main__':
+    opt = parse_opt()
+    main(opt)