|
a |
|
b/src/compute_target.py |
|
|
1 |
# Given HPE results and ratios, compute the final target point |
|
|
2 |
|
|
|
3 |
import cv2 |
|
|
4 |
import matplotlib.pyplot as plt |
|
|
5 |
from utils.trajectory_io import * |
|
|
6 |
import pickle |
|
|
7 |
from utils.triangulation import * |
|
|
8 |
import open3d as o3d |
|
|
9 |
from scipy.linalg import null_space |
|
|
10 |
|
|
|
11 |
from subject_info import SUBJECT_NAME, SCAN_POSE |
|
|
12 |
import argparse |
|
|
13 |
import time |
|
|
14 |
|
|
|
15 |
parser = argparse.ArgumentParser(description='Compute target') |
|
|
16 |
parser.add_argument('--pose_model', type=str, default='ViTPose_large', help='pose model') |
|
|
17 |
parser.add_argument('--subject_name', type=str, default='John Doe', help='subject name') |
|
|
18 |
parser.add_argument('--scan_pose', type=str, default='none', help='scan pose') |
|
|
19 |
parser.add_argument('--target1_r1', type=float, default=0.3, help='target1_r1') |
|
|
20 |
parser.add_argument('--target1_r2', type=float, default=0.1, help='target1_r2') |
|
|
21 |
parser.add_argument('--target2_r1', type=float, default=0.3, help='target2_r1') |
|
|
22 |
parser.add_argument('--target2_r2', type=float, default=0.55, help='target2_r2') |
|
|
23 |
parser.add_argument('--target4_r1', type=float, default=0.35, help='target4_r1') |
|
|
24 |
parser.add_argument('--target4_r2', type=float, default=0.1, help='target4_r2') |
|
|
25 |
|
|
|
26 |
args = parser.parse_args() |
|
|
27 |
POSE_MODEL = args.pose_model |
|
|
28 |
if args.subject_name != 'John Doe': |
|
|
29 |
SUBJECT_NAME = args.subject_name |
|
|
30 |
if args.scan_pose != 'none': |
|
|
31 |
SCAN_POSE = args.scan_pose |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
def target12_3D(l_shoulder_cam1, l_shoulder_cam2, r_shoulder_cam1, r_shoulder_cam2, |
|
|
35 |
cam1_intr, cam2_intr, T_base_cam1, T_base_cam2, ratio_1=0.3, ratio_2=0.1): |
|
|
36 |
''' |
|
|
37 |
A 3D method to determine the 1st and 2nd target 3D coordinate. Didn't use nipples. |
|
|
38 |
:X1, X2 --3D coordinates of the right, left shoulder |
|
|
39 |
:X3 -- 3D coordinate of the point determined by ratio_1 |
|
|
40 |
:t1 -- the direction vector of the line connecting X1 and X2 |
|
|
41 |
:t2 -- the direction vector of the line connecting X3 and target |
|
|
42 |
:param ratio_1: ratio on the line connecting X1 and X2 |
|
|
43 |
:param ratio_2: ratio between X3 to target and X1 to X2 |
|
|
44 |
''' |
|
|
45 |
X1 = reconstruct(r_shoulder_cam1, r_shoulder_cam2, cam1_intr, cam2_intr, T_base_cam1, T_base_cam2) |
|
|
46 |
X1 = triangulation_post_process(X1) |
|
|
47 |
X2 = reconstruct(l_shoulder_cam1, l_shoulder_cam2, cam1_intr, cam2_intr, T_base_cam1, T_base_cam2) |
|
|
48 |
X2 = triangulation_post_process(X2) |
|
|
49 |
|
|
|
50 |
X3 = X1 + ratio_1 * (X2 - X1) |
|
|
51 |
|
|
|
52 |
t1 = ((X2 - X1) / np.linalg.norm(X2 - X1)).squeeze() |
|
|
53 |
n = np.array([0, 0, 1]) # z-axis of the base frame / normal vector of the base frame's x-y plane |
|
|
54 |
A = np.vstack([t1, n]) |
|
|
55 |
t2 = null_space(A) # t2 is perpendicular to both t1 and n |
|
|
56 |
t2 = t2 / np.linalg.norm(t2) # normalize t2 |
|
|
57 |
|
|
|
58 |
if t2[0] < 0: |
|
|
59 |
t2 = -t2 |
|
|
60 |
|
|
|
61 |
target = X3 + ratio_2 * np.linalg.norm(X2 - X1) * t2 |
|
|
62 |
target = triangulation_post_process(target, verbose=False) |
|
|
63 |
position_data['front'] = [X1, X2, t2] |
|
|
64 |
|
|
|
65 |
return target |
|
|
66 |
|
|
|
67 |
|
|
|
68 |
def triangulation_post_process(original_3d, verbose=False): |
|
|
69 |
''' |
|
|
70 |
Use the original x&y values to find a closest point in the point cloud. |
|
|
71 |
Use the new point's z value as the new z, combined with the original x&y. |
|
|
72 |
:param original_3d: The original 3D coordinate from triangulation |
|
|
73 |
''' |
|
|
74 |
if verbose: |
|
|
75 |
print("original_3d: ", original_3d) |
|
|
76 |
idx = np.argmin(np.square(coordinates[:, 0:2] - original_3d.squeeze()[0:2]).sum(axis=1)) |
|
|
77 |
if verbose: |
|
|
78 |
new_3d = coordinates[idx] |
|
|
79 |
print("new_3d: ", new_3d) |
|
|
80 |
new_z = coordinates[idx, 2] |
|
|
81 |
new_3d = np.vstack((original_3d[0:2], [new_z])) |
|
|
82 |
return new_3d |
|
|
83 |
|
|
|
84 |
|
|
|
85 |
def target4_3D(r_shoulder_cam1, r_shoulder_cam2, r_hip_cam1, r_hip_cam2, |
|
|
86 |
cam1_intr, cam2_intr, T_base_cam1, T_base_cam2, ratio_1=0.35, ratio_2=0.1): |
|
|
87 |
''' |
|
|
88 |
Similar to 1st&2nd target but ratio 2 operated on X1 to X3, instead of X1 to X2 |
|
|
89 |
:X1, X2 --3D coordinates of the right shoulder and the right hip |
|
|
90 |
:X3 -- 3D coordinate of the point determined by ratio_1 |
|
|
91 |
:t1 -- the direction vector of the line connecting X1 and X2 |
|
|
92 |
:t2 -- the direction vector of the line connecting X3 and target |
|
|
93 |
:param ratio_1: ratio on the line connecting X1 and X2 |
|
|
94 |
:param ratio_2: ratio between X3 to target and X1 to X3 |
|
|
95 |
''' |
|
|
96 |
X1 = reconstruct(r_shoulder_cam1, r_shoulder_cam2, cam1_intr, cam2_intr, T_base_cam1, T_base_cam2) |
|
|
97 |
X1 = triangulation_post_process(X1) |
|
|
98 |
X2 = reconstruct(r_hip_cam1, r_hip_cam2, cam1_intr, cam2_intr, T_base_cam1, T_base_cam2) |
|
|
99 |
X2 = triangulation_post_process(X2) |
|
|
100 |
|
|
|
101 |
X3 = X1 + ratio_1 * (X2 - X1) |
|
|
102 |
|
|
|
103 |
t1 = ((X2 - X1) / np.linalg.norm(X2 - X1)).squeeze() |
|
|
104 |
n = np.array([0, 0, 1]) |
|
|
105 |
A = np.vstack([t1, n]) |
|
|
106 |
t2 = null_space(A) |
|
|
107 |
t2 = t2 / np.linalg.norm(t2) |
|
|
108 |
|
|
|
109 |
if t2[1] < 0: |
|
|
110 |
t2 = -t2 |
|
|
111 |
|
|
|
112 |
target = X3 + ratio_2 * np.linalg.norm(X1 - X3) * t2 |
|
|
113 |
target = triangulation_post_process(target) |
|
|
114 |
position_data['side'] = [X1, X2, t2] |
|
|
115 |
|
|
|
116 |
return target |
|
|
117 |
|
|
|
118 |
|
|
|
119 |
def draw_front_target_point(target_point1, target_point2, l_shoulder1, r_shoulder1, l_shoulder2, r_shoulder2, target): |
|
|
120 |
image1 = plt.imread(folder_path + 'color_images/cam_1.jpg') |
|
|
121 |
cv2.circle(image1, (int(target_point1[0]), int(target_point1[1])), 2, (36, 255, 12), 2, -1) |
|
|
122 |
cv2.circle(image1, (int(l_shoulder1[0]), int(l_shoulder1[1])), 2, (36, 255, 12), 2, -1) |
|
|
123 |
cv2.circle(image1, (int(r_shoulder1[0]), int(r_shoulder1[1])), 2, (36, 255, 12), 2, -1) |
|
|
124 |
cv2.line(image1, (int(l_shoulder1[0]), int(l_shoulder1[1])), (int(r_shoulder1[0]), int(r_shoulder1[1])), |
|
|
125 |
color=(255, 0, 0), thickness=2) |
|
|
126 |
|
|
|
127 |
plt.subplot(121) |
|
|
128 |
plt.imshow(image1) |
|
|
129 |
|
|
|
130 |
image2 = plt.imread(folder_path + 'color_images/cam_2.jpg') |
|
|
131 |
cv2.circle(image2, (int(target_point2[0]), int(target_point2[1])), 2, (36, 255, 12), 2, -1) |
|
|
132 |
cv2.circle(image2, (int(l_shoulder2[0]), int(l_shoulder2[1])), 2, (36, 255, 12), 2, -1) |
|
|
133 |
cv2.circle(image2, (int(r_shoulder2[0]), int(r_shoulder2[1])), 2, (36, 255, 12), 2, -1) |
|
|
134 |
cv2.line(image2, (int(l_shoulder2[0]), int(l_shoulder2[1])), (int(r_shoulder2[0]), int(r_shoulder2[1])), |
|
|
135 |
color=(255, 0, 0), thickness=2) |
|
|
136 |
|
|
|
137 |
plt.subplot(122) |
|
|
138 |
plt.imshow(image2) |
|
|
139 |
|
|
|
140 |
plt.show() |
|
|
141 |
|
|
|
142 |
if target == 1: |
|
|
143 |
plt.imsave(folder_path + 'target1_highlight/cam_1.jpg', image1) |
|
|
144 |
plt.imsave(folder_path + 'target1_highlight/cam_2.jpg', image2) |
|
|
145 |
else: |
|
|
146 |
plt.imsave(folder_path + 'target2_highlight/cam_1.jpg', image1) |
|
|
147 |
plt.imsave(folder_path + 'target2_highlight/cam_2.jpg', image2) |
|
|
148 |
|
|
|
149 |
|
|
|
150 |
def draw_side_target_point(target_point1, target_point2, r_hip1, r_shoulder1, r_hip2, r_shoulder2): |
|
|
151 |
image1 = plt.imread(folder_path + 'color_images/cam_1.jpg') |
|
|
152 |
cv2.circle(image1, (int(target_point1[0]), int(target_point1[1])), 3, (36, 255, 12), 3, -1) |
|
|
153 |
cv2.circle(image1, (int(r_hip1[0]), int(r_hip1[1])), 2, (36, 255, 12), 2, -1) |
|
|
154 |
cv2.circle(image1, (int(r_shoulder1[0]), int(r_shoulder1[1])), 2, (36, 255, 12), 2, -1) |
|
|
155 |
cv2.line(image1, (int(r_hip1[0]), int(r_hip1[1])), (int(r_shoulder1[0]), int(r_shoulder1[1])), |
|
|
156 |
color=(255, 0, 0), thickness=2) |
|
|
157 |
|
|
|
158 |
plt.subplot(121) |
|
|
159 |
plt.imshow(image1) |
|
|
160 |
|
|
|
161 |
image2 = plt.imread(folder_path + 'color_images/cam_2.jpg') |
|
|
162 |
cv2.circle(image2, (int(target_point2[0]), int(target_point2[1])), 3, (36, 255, 12), 3, -1) |
|
|
163 |
cv2.circle(image2, (int(r_hip2[0]), int(r_hip2[1])), 2, (36, 255, 12), 2, -1) |
|
|
164 |
cv2.circle(image2, (int(r_shoulder2[0]), int(r_shoulder2[1])), 2, (36, 255, 12), 2, -1) |
|
|
165 |
cv2.line(image2, (int(r_hip2[0]), int(r_hip2[1])), (int(r_shoulder2[0]), int(r_shoulder2[1])), |
|
|
166 |
color=(255, 0, 0), thickness=2) |
|
|
167 |
|
|
|
168 |
plt.subplot(122) |
|
|
169 |
plt.imshow(image2) |
|
|
170 |
|
|
|
171 |
plt.show() |
|
|
172 |
plt.imsave(folder_path + 'target4_highlight/cam_1.jpg', image1) |
|
|
173 |
plt.imsave(folder_path + 'target4_highlight/cam_2.jpg', image2) |
|
|
174 |
|
|
|
175 |
folder_path = 'src/data/' + SUBJECT_NAME + '/' + SCAN_POSE + '/' # when run from src directory |
|
|
176 |
# folder_path = '../data/' + SUBJECT_NAME + '/' + SCAN_POSE + '/' # when run from evaluation directory |
|
|
177 |
|
|
|
178 |
# read RGBD intrinsics |
|
|
179 |
with open(folder_path + 'intrinsics/cam_1_intrinsics.pickle', 'rb') as f: |
|
|
180 |
cam1_intr = pickle.load(f) |
|
|
181 |
|
|
|
182 |
with open(folder_path + 'intrinsics/cam_2_intrinsics.pickle', 'rb') as f: |
|
|
183 |
cam2_intr = pickle.load(f) |
|
|
184 |
|
|
|
185 |
with open(folder_path + 'intrinsics/cam_1_depth_intr.pickle', 'rb') as f: |
|
|
186 |
depth_cam1_intr = pickle.load(f) |
|
|
187 |
|
|
|
188 |
with open(folder_path + 'intrinsics/cam_2_depth_intr.pickle', 'rb') as f: |
|
|
189 |
depth_cam2_intr = pickle.load(f) |
|
|
190 |
|
|
|
191 |
# read extrinsics |
|
|
192 |
camera_poses = read_trajectory(folder_path + "odometry.log") |
|
|
193 |
T_cam1_base = camera_poses[0].pose |
|
|
194 |
T_base_cam1 = np.linalg.inv(T_cam1_base) |
|
|
195 |
# print("T_base_cam1/extr: \n", T_base_cam1) |
|
|
196 |
T_cam2_base = camera_poses[1].pose |
|
|
197 |
T_base_cam2 = np.linalg.inv(T_cam2_base) |
|
|
198 |
# print("T_base_cam2/extr: \n", T_base_cam2) |
|
|
199 |
|
|
|
200 |
# read pose keypoints |
|
|
201 |
with open(folder_path + POSE_MODEL + '/keypoints/cam_1_keypoints.pickle', 'rb') as f: |
|
|
202 |
cam1_keypoints = pickle.load(f) |
|
|
203 |
if POSE_MODEL == "OpenPose": |
|
|
204 |
l_shoulder1 = np.array(cam1_keypoints['people'][0]['pose_keypoints_2d'][15:17]) |
|
|
205 |
r_shoulder1 = np.array(cam1_keypoints['people'][0]['pose_keypoints_2d'][6:8]) |
|
|
206 |
l_hip1 = np.array(cam1_keypoints['people'][0]['pose_keypoints_2d'][36:38]) |
|
|
207 |
r_hip1 = np.array(cam1_keypoints['people'][0]['pose_keypoints_2d'][27:29]) |
|
|
208 |
else: |
|
|
209 |
l_shoulder1 = cam1_keypoints[0]['keypoints'][5][:2] |
|
|
210 |
r_shoulder1 = cam1_keypoints[0]['keypoints'][6][:2] |
|
|
211 |
l_hip1 = cam1_keypoints[0]['keypoints'][11][:2] |
|
|
212 |
r_hip1 = cam1_keypoints[0]['keypoints'][12][:2] |
|
|
213 |
|
|
|
214 |
with open(folder_path + POSE_MODEL + '/keypoints/cam_2_keypoints.pickle', 'rb') as f: |
|
|
215 |
cam2_keypoints = pickle.load(f) |
|
|
216 |
if POSE_MODEL == "OpenPose": |
|
|
217 |
l_shoulder2 = np.array(cam2_keypoints['people'][0]['pose_keypoints_2d'][15:17]) |
|
|
218 |
r_shoulder2 = np.array(cam2_keypoints['people'][0]['pose_keypoints_2d'][6:8]) |
|
|
219 |
l_hip2 = np.array(cam2_keypoints['people'][0]['pose_keypoints_2d'][36:38]) |
|
|
220 |
r_hip2 = np.array(cam2_keypoints['people'][0]['pose_keypoints_2d'][27:29]) |
|
|
221 |
else: |
|
|
222 |
l_shoulder2 = cam2_keypoints[0]['keypoints'][5][:2] |
|
|
223 |
r_shoulder2 = cam2_keypoints[0]['keypoints'][6][:2] |
|
|
224 |
l_hip2 = cam2_keypoints[0]['keypoints'][11][:2] |
|
|
225 |
r_hip2 = cam2_keypoints[0]['keypoints'][12][:2] |
|
|
226 |
|
|
|
227 |
############ TSDF volume ############ |
|
|
228 |
start_time = time.time() |
|
|
229 |
volume = o3d.pipelines.integration.ScalableTSDFVolume( |
|
|
230 |
voxel_length=1 / 512.0, |
|
|
231 |
sdf_trunc=0.04, |
|
|
232 |
color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8) |
|
|
233 |
|
|
|
234 |
# show RGBD images from all the views |
|
|
235 |
for i in range(len(camera_poses)): |
|
|
236 |
# print("Integrate {:d}-th image into the volume.".format(i)) |
|
|
237 |
color = o3d.io.read_image(folder_path + "color_images/cam_{}.jpg".format(i+1)) |
|
|
238 |
depth = o3d.io.read_image(folder_path + "depth_images/cam_{}.png".format(i+1)) |
|
|
239 |
|
|
|
240 |
depth_image = np.asanyarray(depth) |
|
|
241 |
color_image = np.asanyarray(color) |
|
|
242 |
|
|
|
243 |
depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.09), cv2.COLORMAP_JET) |
|
|
244 |
depth_colormap_dim = depth_colormap.shape |
|
|
245 |
color_colormap_dim = color_image.shape |
|
|
246 |
|
|
|
247 |
# If depth and color resolutions are different, resize color image to match depth image for display |
|
|
248 |
if depth_colormap_dim != color_colormap_dim: |
|
|
249 |
resized_color_image = cv2.resize(color_image, dsize=(depth_colormap_dim[1], depth_colormap_dim[0]), |
|
|
250 |
interpolation=cv2.INTER_AREA) |
|
|
251 |
images = np.hstack((resized_color_image, depth_colormap)) |
|
|
252 |
else: |
|
|
253 |
images = np.hstack((color_image, depth_colormap)) |
|
|
254 |
|
|
|
255 |
plt.imsave(folder_path + "depth_colormap/cam_{}.png".format(i+1), depth_colormap) |
|
|
256 |
|
|
|
257 |
# Show images |
|
|
258 |
cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE) |
|
|
259 |
plt.imshow(images) |
|
|
260 |
plt.show() |
|
|
261 |
|
|
|
262 |
rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth( |
|
|
263 |
color, depth, depth_trunc=4.0, convert_rgb_to_intensity=False) |
|
|
264 |
|
|
|
265 |
cam_intr = depth_cam1_intr if i == 0 else depth_cam2_intr # use depth camera's intrinsics |
|
|
266 |
|
|
|
267 |
intr = o3d.camera.PinholeCameraIntrinsic( |
|
|
268 |
width=640, |
|
|
269 |
height=480, |
|
|
270 |
fx=cam_intr[0,0], |
|
|
271 |
fy=cam_intr[1,1], |
|
|
272 |
cx=cam_intr[0,2], |
|
|
273 |
cy=cam_intr[1,2] |
|
|
274 |
) |
|
|
275 |
|
|
|
276 |
volume.integrate(rgbd, intr, np.linalg.inv(camera_poses[i].pose)) |
|
|
277 |
print("Volume Integration: {:.3f} s".format(time.time() - start_time)) |
|
|
278 |
|
|
|
279 |
# point cloud generation |
|
|
280 |
pcd = volume.extract_point_cloud() |
|
|
281 |
downpcd = pcd.voxel_down_sample(voxel_size=0.01) |
|
|
282 |
downpcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30)) |
|
|
283 |
o3d.visualization.draw_geometries([downpcd]) |
|
|
284 |
|
|
|
285 |
coordinates = np.asarray(downpcd.points) |
|
|
286 |
normals = np.asarray(downpcd.normals) |
|
|
287 |
|
|
|
288 |
# save data, write pcd |
|
|
289 |
o3d.io.write_point_cloud(folder_path + 'downpcd.ply', downpcd) |
|
|
290 |
with open(folder_path + 'pcd_coordinates.pickle', 'wb') as f: |
|
|
291 |
pickle.dump(coordinates, f) |
|
|
292 |
|
|
|
293 |
with open(folder_path + 'pcd_normals.pickle', 'wb') as f: |
|
|
294 |
pickle.dump(normals, f) |
|
|
295 |
|
|
|
296 |
# Read pcd coordianates |
|
|
297 |
with open(folder_path + 'pcd_coordinates.pickle', 'rb') as f: |
|
|
298 |
coordinates = pickle.load(f) |
|
|
299 |
|
|
|
300 |
final_target_list = [] # the target coordinates used to navigate the robotic arm |
|
|
301 |
position_data = {} # store |
|
|
302 |
|
|
|
303 |
if SCAN_POSE == 'front': |
|
|
304 |
target1 = target12_3D(l_shoulder1, l_shoulder2, r_shoulder1, r_shoulder2, |
|
|
305 |
cam1_intr, cam2_intr, T_base_cam1, T_base_cam2, ratio_1=args.target1_r1, |
|
|
306 |
ratio_2=args.target1_r2) |
|
|
307 |
target2 = target12_3D(l_shoulder1, l_shoulder2, r_shoulder1, r_shoulder2, |
|
|
308 |
cam1_intr, cam2_intr, T_base_cam1, T_base_cam2, ratio_1=args.target2_r1, |
|
|
309 |
ratio_2=args.target2_r2) |
|
|
310 |
|
|
|
311 |
target1_2d_cam1 = from_homog(cam1_intr @ T_base_cam1[0:3, :] @ to_homog(target1)).squeeze() |
|
|
312 |
target1_2d_cam2 = from_homog(cam2_intr @ T_base_cam2[0:3, :] @ to_homog(target1)).squeeze() |
|
|
313 |
|
|
|
314 |
target2_2d_cam1 = from_homog(cam1_intr @ T_base_cam1[0:3, :] @ to_homog(target2)).squeeze() |
|
|
315 |
target2_2d_cam2 = from_homog(cam2_intr @ T_base_cam2[0:3, :] @ to_homog(target2)).squeeze() |
|
|
316 |
|
|
|
317 |
draw_front_target_point(target1_2d_cam1, target1_2d_cam2, l_shoulder1, r_shoulder1, l_shoulder2, r_shoulder2, target=1) |
|
|
318 |
draw_front_target_point(target2_2d_cam1, target2_2d_cam2, l_shoulder1, r_shoulder1, l_shoulder2, r_shoulder2, target=2) |
|
|
319 |
|
|
|
320 |
final_target_list.append(target1) |
|
|
321 |
final_target_list.append(target2) |
|
|
322 |
|
|
|
323 |
elif SCAN_POSE == 'side': |
|
|
324 |
target4 = target4_3D(r_shoulder1, r_shoulder2, r_hip1, r_hip2, |
|
|
325 |
cam1_intr, cam2_intr, T_base_cam1, T_base_cam2, ratio_1=args.target4_r1, |
|
|
326 |
ratio_2=args.target4_r2) |
|
|
327 |
|
|
|
328 |
target4_2d_cam1 = from_homog(cam1_intr @ T_base_cam1[0:3, :] @ to_homog(target4)).squeeze() |
|
|
329 |
target4_2d_cam2 = from_homog(cam2_intr @ T_base_cam2[0:3, :] @ to_homog(target4)).squeeze() |
|
|
330 |
|
|
|
331 |
draw_side_target_point(target4_2d_cam1, target4_2d_cam2, r_hip1, r_shoulder1, r_hip2, r_shoulder2) |
|
|
332 |
|
|
|
333 |
final_target_list.append(target4) |
|
|
334 |
|
|
|
335 |
# # save results with initial ratio parameters |
|
|
336 |
# with open(folder_path + POSE_MODEL + '/final_target.pickle', 'wb') as f: |
|
|
337 |
# pickle.dump(final_target_list, f) |
|
|
338 |
# |
|
|
339 |
# with open(folder_path + POSE_MODEL + '/position_data.pickle', 'wb') as f: |
|
|
340 |
# pickle.dump(position_data, f) |
|
|
341 |
|
|
|
342 |
# # save results with optimized ratio parameters based on planar euclidean distance |
|
|
343 |
# with open(folder_path + POSE_MODEL + '/final_target_opt.pickle', 'wb') as f: |
|
|
344 |
# pickle.dump(final_target_list, f) |
|
|
345 |
# |
|
|
346 |
# with open(folder_path + POSE_MODEL + '/position_data_opt.pickle', 'wb') as f: |
|
|
347 |
# pickle.dump(position_data, f) |
|
|
348 |
|
|
|
349 |
# # save as temporary file for evaluation |
|
|
350 |
# with open(folder_path + POSE_MODEL + '/tmp_target_test.pickle', 'wb') as f: |
|
|
351 |
# pickle.dump(final_target_list, f) |