[c1b1c5]: / src / compute_target.py

Download this file

352 lines (281 with data), 15.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# Given HPE results and ratios, compute the final target point
import cv2
import matplotlib.pyplot as plt
from utils.trajectory_io import *
import pickle
from utils.triangulation import *
import open3d as o3d
from scipy.linalg import null_space
from subject_info import SUBJECT_NAME, SCAN_POSE
import argparse
import time
parser = argparse.ArgumentParser(description='Compute target')
parser.add_argument('--pose_model', type=str, default='ViTPose_large', help='pose model')
parser.add_argument('--subject_name', type=str, default='John Doe', help='subject name')
parser.add_argument('--scan_pose', type=str, default='none', help='scan pose')
parser.add_argument('--target1_r1', type=float, default=0.3, help='target1_r1')
parser.add_argument('--target1_r2', type=float, default=0.1, help='target1_r2')
parser.add_argument('--target2_r1', type=float, default=0.3, help='target2_r1')
parser.add_argument('--target2_r2', type=float, default=0.55, help='target2_r2')
parser.add_argument('--target4_r1', type=float, default=0.35, help='target4_r1')
parser.add_argument('--target4_r2', type=float, default=0.1, help='target4_r2')
args = parser.parse_args()
POSE_MODEL = args.pose_model
if args.subject_name != 'John Doe':
SUBJECT_NAME = args.subject_name
if args.scan_pose != 'none':
SCAN_POSE = args.scan_pose
def target12_3D(l_shoulder_cam1, l_shoulder_cam2, r_shoulder_cam1, r_shoulder_cam2,
cam1_intr, cam2_intr, T_base_cam1, T_base_cam2, ratio_1=0.3, ratio_2=0.1):
'''
A 3D method to determine the 1st and 2nd target 3D coordinate. Didn't use nipples.
:X1, X2 --3D coordinates of the right, left shoulder
:X3 -- 3D coordinate of the point determined by ratio_1
:t1 -- the direction vector of the line connecting X1 and X2
:t2 -- the direction vector of the line connecting X3 and target
:param ratio_1: ratio on the line connecting X1 and X2
:param ratio_2: ratio between X3 to target and X1 to X2
'''
X1 = reconstruct(r_shoulder_cam1, r_shoulder_cam2, cam1_intr, cam2_intr, T_base_cam1, T_base_cam2)
X1 = triangulation_post_process(X1)
X2 = reconstruct(l_shoulder_cam1, l_shoulder_cam2, cam1_intr, cam2_intr, T_base_cam1, T_base_cam2)
X2 = triangulation_post_process(X2)
X3 = X1 + ratio_1 * (X2 - X1)
t1 = ((X2 - X1) / np.linalg.norm(X2 - X1)).squeeze()
n = np.array([0, 0, 1]) # z-axis of the base frame / normal vector of the base frame's x-y plane
A = np.vstack([t1, n])
t2 = null_space(A) # t2 is perpendicular to both t1 and n
t2 = t2 / np.linalg.norm(t2) # normalize t2
if t2[0] < 0:
t2 = -t2
target = X3 + ratio_2 * np.linalg.norm(X2 - X1) * t2
target = triangulation_post_process(target, verbose=False)
position_data['front'] = [X1, X2, t2]
return target
def triangulation_post_process(original_3d, verbose=False):
'''
Use the original x&y values to find a closest point in the point cloud.
Use the new point's z value as the new z, combined with the original x&y.
:param original_3d: The original 3D coordinate from triangulation
'''
if verbose:
print("original_3d: ", original_3d)
idx = np.argmin(np.square(coordinates[:, 0:2] - original_3d.squeeze()[0:2]).sum(axis=1))
if verbose:
new_3d = coordinates[idx]
print("new_3d: ", new_3d)
new_z = coordinates[idx, 2]
new_3d = np.vstack((original_3d[0:2], [new_z]))
return new_3d
def target4_3D(r_shoulder_cam1, r_shoulder_cam2, r_hip_cam1, r_hip_cam2,
cam1_intr, cam2_intr, T_base_cam1, T_base_cam2, ratio_1=0.35, ratio_2=0.1):
'''
Similar to 1st&2nd target but ratio 2 operated on X1 to X3, instead of X1 to X2
:X1, X2 --3D coordinates of the right shoulder and the right hip
:X3 -- 3D coordinate of the point determined by ratio_1
:t1 -- the direction vector of the line connecting X1 and X2
:t2 -- the direction vector of the line connecting X3 and target
:param ratio_1: ratio on the line connecting X1 and X2
:param ratio_2: ratio between X3 to target and X1 to X3
'''
X1 = reconstruct(r_shoulder_cam1, r_shoulder_cam2, cam1_intr, cam2_intr, T_base_cam1, T_base_cam2)
X1 = triangulation_post_process(X1)
X2 = reconstruct(r_hip_cam1, r_hip_cam2, cam1_intr, cam2_intr, T_base_cam1, T_base_cam2)
X2 = triangulation_post_process(X2)
X3 = X1 + ratio_1 * (X2 - X1)
t1 = ((X2 - X1) / np.linalg.norm(X2 - X1)).squeeze()
n = np.array([0, 0, 1])
A = np.vstack([t1, n])
t2 = null_space(A)
t2 = t2 / np.linalg.norm(t2)
if t2[1] < 0:
t2 = -t2
target = X3 + ratio_2 * np.linalg.norm(X1 - X3) * t2
target = triangulation_post_process(target)
position_data['side'] = [X1, X2, t2]
return target
def draw_front_target_point(target_point1, target_point2, l_shoulder1, r_shoulder1, l_shoulder2, r_shoulder2, target):
image1 = plt.imread(folder_path + 'color_images/cam_1.jpg')
cv2.circle(image1, (int(target_point1[0]), int(target_point1[1])), 2, (36, 255, 12), 2, -1)
cv2.circle(image1, (int(l_shoulder1[0]), int(l_shoulder1[1])), 2, (36, 255, 12), 2, -1)
cv2.circle(image1, (int(r_shoulder1[0]), int(r_shoulder1[1])), 2, (36, 255, 12), 2, -1)
cv2.line(image1, (int(l_shoulder1[0]), int(l_shoulder1[1])), (int(r_shoulder1[0]), int(r_shoulder1[1])),
color=(255, 0, 0), thickness=2)
plt.subplot(121)
plt.imshow(image1)
image2 = plt.imread(folder_path + 'color_images/cam_2.jpg')
cv2.circle(image2, (int(target_point2[0]), int(target_point2[1])), 2, (36, 255, 12), 2, -1)
cv2.circle(image2, (int(l_shoulder2[0]), int(l_shoulder2[1])), 2, (36, 255, 12), 2, -1)
cv2.circle(image2, (int(r_shoulder2[0]), int(r_shoulder2[1])), 2, (36, 255, 12), 2, -1)
cv2.line(image2, (int(l_shoulder2[0]), int(l_shoulder2[1])), (int(r_shoulder2[0]), int(r_shoulder2[1])),
color=(255, 0, 0), thickness=2)
plt.subplot(122)
plt.imshow(image2)
plt.show()
if target == 1:
plt.imsave(folder_path + 'target1_highlight/cam_1.jpg', image1)
plt.imsave(folder_path + 'target1_highlight/cam_2.jpg', image2)
else:
plt.imsave(folder_path + 'target2_highlight/cam_1.jpg', image1)
plt.imsave(folder_path + 'target2_highlight/cam_2.jpg', image2)
def draw_side_target_point(target_point1, target_point2, r_hip1, r_shoulder1, r_hip2, r_shoulder2):
image1 = plt.imread(folder_path + 'color_images/cam_1.jpg')
cv2.circle(image1, (int(target_point1[0]), int(target_point1[1])), 3, (36, 255, 12), 3, -1)
cv2.circle(image1, (int(r_hip1[0]), int(r_hip1[1])), 2, (36, 255, 12), 2, -1)
cv2.circle(image1, (int(r_shoulder1[0]), int(r_shoulder1[1])), 2, (36, 255, 12), 2, -1)
cv2.line(image1, (int(r_hip1[0]), int(r_hip1[1])), (int(r_shoulder1[0]), int(r_shoulder1[1])),
color=(255, 0, 0), thickness=2)
plt.subplot(121)
plt.imshow(image1)
image2 = plt.imread(folder_path + 'color_images/cam_2.jpg')
cv2.circle(image2, (int(target_point2[0]), int(target_point2[1])), 3, (36, 255, 12), 3, -1)
cv2.circle(image2, (int(r_hip2[0]), int(r_hip2[1])), 2, (36, 255, 12), 2, -1)
cv2.circle(image2, (int(r_shoulder2[0]), int(r_shoulder2[1])), 2, (36, 255, 12), 2, -1)
cv2.line(image2, (int(r_hip2[0]), int(r_hip2[1])), (int(r_shoulder2[0]), int(r_shoulder2[1])),
color=(255, 0, 0), thickness=2)
plt.subplot(122)
plt.imshow(image2)
plt.show()
plt.imsave(folder_path + 'target4_highlight/cam_1.jpg', image1)
plt.imsave(folder_path + 'target4_highlight/cam_2.jpg', image2)
folder_path = 'src/data/' + SUBJECT_NAME + '/' + SCAN_POSE + '/' # when run from src directory
# folder_path = '../data/' + SUBJECT_NAME + '/' + SCAN_POSE + '/' # when run from evaluation directory
# read RGBD intrinsics
with open(folder_path + 'intrinsics/cam_1_intrinsics.pickle', 'rb') as f:
cam1_intr = pickle.load(f)
with open(folder_path + 'intrinsics/cam_2_intrinsics.pickle', 'rb') as f:
cam2_intr = pickle.load(f)
with open(folder_path + 'intrinsics/cam_1_depth_intr.pickle', 'rb') as f:
depth_cam1_intr = pickle.load(f)
with open(folder_path + 'intrinsics/cam_2_depth_intr.pickle', 'rb') as f:
depth_cam2_intr = pickle.load(f)
# read extrinsics
camera_poses = read_trajectory(folder_path + "odometry.log")
T_cam1_base = camera_poses[0].pose
T_base_cam1 = np.linalg.inv(T_cam1_base)
# print("T_base_cam1/extr: \n", T_base_cam1)
T_cam2_base = camera_poses[1].pose
T_base_cam2 = np.linalg.inv(T_cam2_base)
# print("T_base_cam2/extr: \n", T_base_cam2)
# read pose keypoints
with open(folder_path + POSE_MODEL + '/keypoints/cam_1_keypoints.pickle', 'rb') as f:
cam1_keypoints = pickle.load(f)
if POSE_MODEL == "OpenPose":
l_shoulder1 = np.array(cam1_keypoints['people'][0]['pose_keypoints_2d'][15:17])
r_shoulder1 = np.array(cam1_keypoints['people'][0]['pose_keypoints_2d'][6:8])
l_hip1 = np.array(cam1_keypoints['people'][0]['pose_keypoints_2d'][36:38])
r_hip1 = np.array(cam1_keypoints['people'][0]['pose_keypoints_2d'][27:29])
else:
l_shoulder1 = cam1_keypoints[0]['keypoints'][5][:2]
r_shoulder1 = cam1_keypoints[0]['keypoints'][6][:2]
l_hip1 = cam1_keypoints[0]['keypoints'][11][:2]
r_hip1 = cam1_keypoints[0]['keypoints'][12][:2]
with open(folder_path + POSE_MODEL + '/keypoints/cam_2_keypoints.pickle', 'rb') as f:
cam2_keypoints = pickle.load(f)
if POSE_MODEL == "OpenPose":
l_shoulder2 = np.array(cam2_keypoints['people'][0]['pose_keypoints_2d'][15:17])
r_shoulder2 = np.array(cam2_keypoints['people'][0]['pose_keypoints_2d'][6:8])
l_hip2 = np.array(cam2_keypoints['people'][0]['pose_keypoints_2d'][36:38])
r_hip2 = np.array(cam2_keypoints['people'][0]['pose_keypoints_2d'][27:29])
else:
l_shoulder2 = cam2_keypoints[0]['keypoints'][5][:2]
r_shoulder2 = cam2_keypoints[0]['keypoints'][6][:2]
l_hip2 = cam2_keypoints[0]['keypoints'][11][:2]
r_hip2 = cam2_keypoints[0]['keypoints'][12][:2]
############ TSDF volume ############
start_time = time.time()
volume = o3d.pipelines.integration.ScalableTSDFVolume(
voxel_length=1 / 512.0,
sdf_trunc=0.04,
color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8)
# show RGBD images from all the views
for i in range(len(camera_poses)):
# print("Integrate {:d}-th image into the volume.".format(i))
color = o3d.io.read_image(folder_path + "color_images/cam_{}.jpg".format(i+1))
depth = o3d.io.read_image(folder_path + "depth_images/cam_{}.png".format(i+1))
depth_image = np.asanyarray(depth)
color_image = np.asanyarray(color)
depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.09), cv2.COLORMAP_JET)
depth_colormap_dim = depth_colormap.shape
color_colormap_dim = color_image.shape
# If depth and color resolutions are different, resize color image to match depth image for display
if depth_colormap_dim != color_colormap_dim:
resized_color_image = cv2.resize(color_image, dsize=(depth_colormap_dim[1], depth_colormap_dim[0]),
interpolation=cv2.INTER_AREA)
images = np.hstack((resized_color_image, depth_colormap))
else:
images = np.hstack((color_image, depth_colormap))
plt.imsave(folder_path + "depth_colormap/cam_{}.png".format(i+1), depth_colormap)
# Show images
cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
plt.imshow(images)
plt.show()
rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(
color, depth, depth_trunc=4.0, convert_rgb_to_intensity=False)
cam_intr = depth_cam1_intr if i == 0 else depth_cam2_intr # use depth camera's intrinsics
intr = o3d.camera.PinholeCameraIntrinsic(
width=640,
height=480,
fx=cam_intr[0,0],
fy=cam_intr[1,1],
cx=cam_intr[0,2],
cy=cam_intr[1,2]
)
volume.integrate(rgbd, intr, np.linalg.inv(camera_poses[i].pose))
print("Volume Integration: {:.3f} s".format(time.time() - start_time))
# point cloud generation
pcd = volume.extract_point_cloud()
downpcd = pcd.voxel_down_sample(voxel_size=0.01)
downpcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
o3d.visualization.draw_geometries([downpcd])
coordinates = np.asarray(downpcd.points)
normals = np.asarray(downpcd.normals)
# save data, write pcd
o3d.io.write_point_cloud(folder_path + 'downpcd.ply', downpcd)
with open(folder_path + 'pcd_coordinates.pickle', 'wb') as f:
pickle.dump(coordinates, f)
with open(folder_path + 'pcd_normals.pickle', 'wb') as f:
pickle.dump(normals, f)
# Read pcd coordianates
with open(folder_path + 'pcd_coordinates.pickle', 'rb') as f:
coordinates = pickle.load(f)
final_target_list = [] # the target coordinates used to navigate the robotic arm
position_data = {} # store
if SCAN_POSE == 'front':
target1 = target12_3D(l_shoulder1, l_shoulder2, r_shoulder1, r_shoulder2,
cam1_intr, cam2_intr, T_base_cam1, T_base_cam2, ratio_1=args.target1_r1,
ratio_2=args.target1_r2)
target2 = target12_3D(l_shoulder1, l_shoulder2, r_shoulder1, r_shoulder2,
cam1_intr, cam2_intr, T_base_cam1, T_base_cam2, ratio_1=args.target2_r1,
ratio_2=args.target2_r2)
target1_2d_cam1 = from_homog(cam1_intr @ T_base_cam1[0:3, :] @ to_homog(target1)).squeeze()
target1_2d_cam2 = from_homog(cam2_intr @ T_base_cam2[0:3, :] @ to_homog(target1)).squeeze()
target2_2d_cam1 = from_homog(cam1_intr @ T_base_cam1[0:3, :] @ to_homog(target2)).squeeze()
target2_2d_cam2 = from_homog(cam2_intr @ T_base_cam2[0:3, :] @ to_homog(target2)).squeeze()
draw_front_target_point(target1_2d_cam1, target1_2d_cam2, l_shoulder1, r_shoulder1, l_shoulder2, r_shoulder2, target=1)
draw_front_target_point(target2_2d_cam1, target2_2d_cam2, l_shoulder1, r_shoulder1, l_shoulder2, r_shoulder2, target=2)
final_target_list.append(target1)
final_target_list.append(target2)
elif SCAN_POSE == 'side':
target4 = target4_3D(r_shoulder1, r_shoulder2, r_hip1, r_hip2,
cam1_intr, cam2_intr, T_base_cam1, T_base_cam2, ratio_1=args.target4_r1,
ratio_2=args.target4_r2)
target4_2d_cam1 = from_homog(cam1_intr @ T_base_cam1[0:3, :] @ to_homog(target4)).squeeze()
target4_2d_cam2 = from_homog(cam2_intr @ T_base_cam2[0:3, :] @ to_homog(target4)).squeeze()
draw_side_target_point(target4_2d_cam1, target4_2d_cam2, r_hip1, r_shoulder1, r_hip2, r_shoulder2)
final_target_list.append(target4)
# # save results with initial ratio parameters
# with open(folder_path + POSE_MODEL + '/final_target.pickle', 'wb') as f:
# pickle.dump(final_target_list, f)
#
# with open(folder_path + POSE_MODEL + '/position_data.pickle', 'wb') as f:
# pickle.dump(position_data, f)
# # save results with optimized ratio parameters based on planar euclidean distance
# with open(folder_path + POSE_MODEL + '/final_target_opt.pickle', 'wb') as f:
# pickle.dump(final_target_list, f)
#
# with open(folder_path + POSE_MODEL + '/position_data_opt.pickle', 'wb') as f:
# pickle.dump(position_data, f)
# # save as temporary file for evaluation
# with open(folder_path + POSE_MODEL + '/tmp_target_test.pickle', 'wb') as f:
# pickle.dump(final_target_list, f)