|
a |
|
b/pretraining/train.py |
|
|
1 |
""" |
|
|
2 |
Copyright (c) 2022, salesforce.com, inc. |
|
|
3 |
All rights reserved. |
|
|
4 |
SPDX-License-Identifier: BSD-3-Clause |
|
|
5 |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
|
6 |
""" |
|
|
7 |
|
|
|
8 |
import argparse |
|
|
9 |
import os |
|
|
10 |
import random |
|
|
11 |
|
|
|
12 |
import numpy as np |
|
|
13 |
import pickle |
|
|
14 |
import torch |
|
|
15 |
import torch.backends.cudnn as cudnn |
|
|
16 |
import wandb |
|
|
17 |
|
|
|
18 |
from torch.utils.data import DataLoader |
|
|
19 |
from torchinfo import summary |
|
|
20 |
from tqdm import tqdm |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
import model.lavis.tasks as tasks |
|
|
24 |
from model.lavis.common.config import Config |
|
|
25 |
from model.lavis.common.dist_utils import get_rank |
|
|
26 |
from model.lavis.common.logger import setup_logger |
|
|
27 |
|
|
|
28 |
from local_config import WANDB_ENTITY |
|
|
29 |
from model.lavis.common.registry import registry |
|
|
30 |
from model.lavis.common.utils import now |
|
|
31 |
|
|
|
32 |
# imports modules for registration |
|
|
33 |
from model.lavis.common.optims import ( |
|
|
34 |
LinearWarmupCosineLRScheduler, |
|
|
35 |
LinearWarmupStepLRScheduler, |
|
|
36 |
) |
|
|
37 |
from model.lavis.datasets.builders import * |
|
|
38 |
from model.lavis.models import * |
|
|
39 |
from model.lavis.processors import * |
|
|
40 |
from model.lavis.runners import * |
|
|
41 |
from model.lavis.tasks import * |
|
|
42 |
from model.lavis.data.ReportDataset import MIMIC_CXR_Dataset |
|
|
43 |
from local_config import PATH_TO_MIMIC_CXR |
|
|
44 |
|
|
|
45 |
|
|
|
46 |
def parse_args(): |
|
|
47 |
parser = argparse.ArgumentParser(description="Training") |
|
|
48 |
|
|
|
49 |
parser.add_argument("--cfg-path", required=True, help="path to configuration file.") |
|
|
50 |
parser.add_argument("--local_rank", type=int, default=0, help="local rank for distributed training.") |
|
|
51 |
parser.add_argument( |
|
|
52 |
"--options", |
|
|
53 |
nargs="+", |
|
|
54 |
help="override some settings in the used config, the key-value pair " |
|
|
55 |
"in xxx=yyy format will be merged into config file (deprecate), " |
|
|
56 |
"change to --cfg-options instead.", |
|
|
57 |
) |
|
|
58 |
|
|
|
59 |
args = parser.parse_args() |
|
|
60 |
# if 'LOCAL_RANK' not in os.environ: |
|
|
61 |
# os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
|
62 |
|
|
|
63 |
return args |
|
|
64 |
|
|
|
65 |
|
|
|
66 |
def setup_seeds(config): |
|
|
67 |
seed = config.run_cfg.seed + get_rank() |
|
|
68 |
|
|
|
69 |
random.seed(seed) |
|
|
70 |
np.random.seed(seed) |
|
|
71 |
torch.manual_seed(seed) |
|
|
72 |
|
|
|
73 |
cudnn.benchmark = False |
|
|
74 |
cudnn.deterministic = True |
|
|
75 |
|
|
|
76 |
|
|
|
77 |
def get_runner_class(cfg): |
|
|
78 |
""" |
|
|
79 |
Get runner class from config. Default to epoch-based runner. |
|
|
80 |
""" |
|
|
81 |
runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base")) |
|
|
82 |
|
|
|
83 |
return runner_cls |
|
|
84 |
|
|
|
85 |
|
|
|
86 |
def main(): |
|
|
87 |
registry.mapping['paths']['cache_root'] = '.' |
|
|
88 |
cfg = Config(parse_args()) |
|
|
89 |
|
|
|
90 |
job_id = now() |
|
|
91 |
|
|
|
92 |
# init_distributed_mode(cfg) |
|
|
93 |
setup_seeds(cfg) |
|
|
94 |
|
|
|
95 |
# set after init_distributed_mode() to only log on master. |
|
|
96 |
setup_logger() |
|
|
97 |
|
|
|
98 |
wandb_run = wandb.init( |
|
|
99 |
project=cfg.run_cfg.project_name, |
|
|
100 |
entity=WANDB_ENTITY, |
|
|
101 |
name=cfg.run_cfg.run_name |
|
|
102 |
) |
|
|
103 |
|
|
|
104 |
cfg.pretty_print() |
|
|
105 |
|
|
|
106 |
task = tasks.setup_task(cfg) |
|
|
107 |
|
|
|
108 |
# my report dataset |
|
|
109 |
datasets = {} |
|
|
110 |
datasets['mimic_cxr'] = {} |
|
|
111 |
datasets['mimic_cxr']['train'] = MIMIC_CXR_Dataset(vis_processor=None, text_processor=None, vis_root=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0", |
|
|
112 |
split="train", cfg=cfg, truncate=None) |
|
|
113 |
datasets['mimic_cxr']['train_val'] = MIMIC_CXR_Dataset(vis_processor=None, text_processor=None, |
|
|
114 |
vis_root=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0", split="train", cfg=cfg, |
|
|
115 |
truncate=1000) # 1000 |
|
|
116 |
datasets['mimic_cxr']['val'] = MIMIC_CXR_Dataset(vis_processor=None, text_processor=None, vis_root=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0", |
|
|
117 |
split="validate", cfg=cfg, truncate=None) |
|
|
118 |
datasets['mimic_cxr']['test'] = MIMIC_CXR_Dataset(vis_processor=None, text_processor=None, vis_root=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0", |
|
|
119 |
split="test", cfg=cfg, truncate=None) |
|
|
120 |
|
|
|
121 |
model = task.build_model(cfg) |
|
|
122 |
print(summary(model, input_size=None, device='cpu')) |
|
|
123 |
|
|
|
124 |
|
|
|
125 |
if not cfg.run_cfg.evaluate: |
|
|
126 |
''' training code ''' |
|
|
127 |
runner = RunnerBase( |
|
|
128 |
cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets |
|
|
129 |
) |
|
|
130 |
|
|
|
131 |
runner.train(wandb_run) |
|
|
132 |
|
|
|
133 |
|
|
|
134 |
else: |
|
|
135 |
''' precompute Q-Former output embeddings for all images ''' |
|
|
136 |
model.cuda() |
|
|
137 |
model.eval() |
|
|
138 |
|
|
|
139 |
dataloader = DataLoader(datasets['mimic_cxr']['test'], batch_size=256, shuffle=False, num_workers=cfg.run_cfg.num_workers) |
|
|
140 |
embeddings = {} |
|
|
141 |
for i, batch in enumerate(tqdm(dataloader)): |
|
|
142 |
qformer_embs, _ = model.forward_image(batch['image'].cuda()) |
|
|
143 |
for j, id in enumerate(batch['image_id']): |
|
|
144 |
dicom = datasets['mimic_cxr']['test'].id_to_dicom[id.item()] |
|
|
145 |
embeddings[dicom] = qformer_embs[j].cpu().detach().numpy() |
|
|
146 |
|
|
|
147 |
# save embeddings |
|
|
148 |
with open(f"pretraining/embs/{cfg.run_cfg.run_name}_embeddings_test.pkl", "wb") as f: |
|
|
149 |
pickle.dump(embeddings, f) |
|
|
150 |
|
|
|
151 |
dataloader = DataLoader(datasets['mimic_cxr']['val'], batch_size=256, shuffle=False, num_workers=cfg.run_cfg.num_workers) |
|
|
152 |
embeddings = {} |
|
|
153 |
for i, batch in enumerate(tqdm(dataloader)): |
|
|
154 |
qformer_embs, _ = model.forward_image(batch['image'].cuda()) |
|
|
155 |
for j, id in enumerate(batch['image_id']): |
|
|
156 |
dicom = datasets['mimic_cxr']['val'].id_to_dicom[id.item()] |
|
|
157 |
embeddings[dicom] = qformer_embs[j].cpu().detach().numpy() |
|
|
158 |
|
|
|
159 |
# save embeddings |
|
|
160 |
with open(f"pretraining/embs/{cfg.run_cfg.run_name}_embeddings_val.pkl", "wb") as f: |
|
|
161 |
pickle.dump(embeddings, f) |
|
|
162 |
|
|
|
163 |
dataloader = DataLoader(datasets['mimic_cxr']['train'], batch_size=256, shuffle=False, num_workers=cfg.run_cfg.num_workers) |
|
|
164 |
embeddings = {} |
|
|
165 |
for i, batch in enumerate(tqdm(dataloader)): |
|
|
166 |
qformer_embs, _ = model.forward_image(batch['image'].cuda()) |
|
|
167 |
for j, id in enumerate(batch['image_id']): |
|
|
168 |
dicom = datasets['mimic_cxr']['train'].id_to_dicom[id.item()] |
|
|
169 |
embeddings[dicom] = qformer_embs[j].cpu().detach().numpy() |
|
|
170 |
|
|
|
171 |
# save embeddings |
|
|
172 |
with open(f"pretraining/embs/{cfg.run_cfg.run_name}_embeddings_train.pkl", "wb") as f: |
|
|
173 |
pickle.dump(embeddings, f) |
|
|
174 |
|
|
|
175 |
|
|
|
176 |
if __name__ == "__main__": |
|
|
177 |
main() |