"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import argparse
import os
import random
import numpy as np
import pickle
import torch
import torch.backends.cudnn as cudnn
import wandb
from torch.utils.data import DataLoader
from torchinfo import summary
from tqdm import tqdm
import model.lavis.tasks as tasks
from model.lavis.common.config import Config
from model.lavis.common.dist_utils import get_rank
from model.lavis.common.logger import setup_logger
from local_config import WANDB_ENTITY
from model.lavis.common.registry import registry
from model.lavis.common.utils import now
# imports modules for registration
from model.lavis.common.optims import (
LinearWarmupCosineLRScheduler,
LinearWarmupStepLRScheduler,
)
from model.lavis.datasets.builders import *
from model.lavis.models import *
from model.lavis.processors import *
from model.lavis.runners import *
from model.lavis.tasks import *
from model.lavis.data.ReportDataset import MIMIC_CXR_Dataset
from local_config import PATH_TO_MIMIC_CXR
def parse_args():
parser = argparse.ArgumentParser(description="Training")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--local_rank", type=int, default=0, help="local rank for distributed training.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
# if 'LOCAL_RANK' not in os.environ:
# os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def get_runner_class(cfg):
"""
Get runner class from config. Default to epoch-based runner.
"""
runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base"))
return runner_cls
def main():
registry.mapping['paths']['cache_root'] = '.'
cfg = Config(parse_args())
job_id = now()
# init_distributed_mode(cfg)
setup_seeds(cfg)
# set after init_distributed_mode() to only log on master.
setup_logger()
wandb_run = wandb.init(
project=cfg.run_cfg.project_name,
entity=WANDB_ENTITY,
name=cfg.run_cfg.run_name
)
cfg.pretty_print()
task = tasks.setup_task(cfg)
# my report dataset
datasets = {}
datasets['mimic_cxr'] = {}
datasets['mimic_cxr']['train'] = MIMIC_CXR_Dataset(vis_processor=None, text_processor=None, vis_root=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0",
split="train", cfg=cfg, truncate=None)
datasets['mimic_cxr']['train_val'] = MIMIC_CXR_Dataset(vis_processor=None, text_processor=None,
vis_root=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0", split="train", cfg=cfg,
truncate=1000) # 1000
datasets['mimic_cxr']['val'] = MIMIC_CXR_Dataset(vis_processor=None, text_processor=None, vis_root=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0",
split="validate", cfg=cfg, truncate=None)
datasets['mimic_cxr']['test'] = MIMIC_CXR_Dataset(vis_processor=None, text_processor=None, vis_root=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0",
split="test", cfg=cfg, truncate=None)
model = task.build_model(cfg)
print(summary(model, input_size=None, device='cpu'))
if not cfg.run_cfg.evaluate:
''' training code '''
runner = RunnerBase(
cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets
)
runner.train(wandb_run)
else:
''' precompute Q-Former output embeddings for all images '''
model.cuda()
model.eval()
dataloader = DataLoader(datasets['mimic_cxr']['test'], batch_size=256, shuffle=False, num_workers=cfg.run_cfg.num_workers)
embeddings = {}
for i, batch in enumerate(tqdm(dataloader)):
qformer_embs, _ = model.forward_image(batch['image'].cuda())
for j, id in enumerate(batch['image_id']):
dicom = datasets['mimic_cxr']['test'].id_to_dicom[id.item()]
embeddings[dicom] = qformer_embs[j].cpu().detach().numpy()
# save embeddings
with open(f"pretraining/embs/{cfg.run_cfg.run_name}_embeddings_test.pkl", "wb") as f:
pickle.dump(embeddings, f)
dataloader = DataLoader(datasets['mimic_cxr']['val'], batch_size=256, shuffle=False, num_workers=cfg.run_cfg.num_workers)
embeddings = {}
for i, batch in enumerate(tqdm(dataloader)):
qformer_embs, _ = model.forward_image(batch['image'].cuda())
for j, id in enumerate(batch['image_id']):
dicom = datasets['mimic_cxr']['val'].id_to_dicom[id.item()]
embeddings[dicom] = qformer_embs[j].cpu().detach().numpy()
# save embeddings
with open(f"pretraining/embs/{cfg.run_cfg.run_name}_embeddings_val.pkl", "wb") as f:
pickle.dump(embeddings, f)
dataloader = DataLoader(datasets['mimic_cxr']['train'], batch_size=256, shuffle=False, num_workers=cfg.run_cfg.num_workers)
embeddings = {}
for i, batch in enumerate(tqdm(dataloader)):
qformer_embs, _ = model.forward_image(batch['image'].cuda())
for j, id in enumerate(batch['image_id']):
dicom = datasets['mimic_cxr']['train'].id_to_dicom[id.item()]
embeddings[dicom] = qformer_embs[j].cpu().detach().numpy()
# save embeddings
with open(f"pretraining/embs/{cfg.run_cfg.run_name}_embeddings_train.pkl", "wb") as f:
pickle.dump(embeddings, f)
if __name__ == "__main__":
main()