Diff of /pretraining/train.py [000000] .. [4abb48]

Switch to side-by-side view

--- a
+++ b/pretraining/train.py
@@ -0,0 +1,177 @@
+"""
+ Copyright (c) 2022, salesforce.com, inc.
+ All rights reserved.
+ SPDX-License-Identifier: BSD-3-Clause
+ For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
+"""
+
+import argparse
+import os
+import random
+
+import numpy as np
+import pickle
+import torch
+import torch.backends.cudnn as cudnn
+import wandb
+
+from torch.utils.data import DataLoader
+from torchinfo import summary
+from tqdm import tqdm
+
+
+import model.lavis.tasks as tasks
+from model.lavis.common.config import Config
+from model.lavis.common.dist_utils import get_rank
+from model.lavis.common.logger import setup_logger
+
+from local_config import WANDB_ENTITY
+from model.lavis.common.registry import registry
+from model.lavis.common.utils import now
+
+# imports modules for registration
+from model.lavis.common.optims import (
+   LinearWarmupCosineLRScheduler,
+   LinearWarmupStepLRScheduler,
+)
+from model.lavis.datasets.builders import *
+from model.lavis.models import *
+from model.lavis.processors import *
+from model.lavis.runners import *
+from model.lavis.tasks import *
+from model.lavis.data.ReportDataset import MIMIC_CXR_Dataset
+from local_config import PATH_TO_MIMIC_CXR
+
+
+def parse_args():
+    parser = argparse.ArgumentParser(description="Training")
+
+    parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
+    parser.add_argument("--local_rank", type=int, default=0, help="local rank for distributed training.")
+    parser.add_argument(
+        "--options",
+        nargs="+",
+        help="override some settings in the used config, the key-value pair "
+             "in xxx=yyy format will be merged into config file (deprecate), "
+             "change to --cfg-options instead.",
+    )
+
+    args = parser.parse_args()
+    # if 'LOCAL_RANK' not in os.environ:
+    #     os.environ['LOCAL_RANK'] = str(args.local_rank)
+
+    return args
+
+
+def setup_seeds(config):
+    seed = config.run_cfg.seed + get_rank()
+
+    random.seed(seed)
+    np.random.seed(seed)
+    torch.manual_seed(seed)
+
+    cudnn.benchmark = False
+    cudnn.deterministic = True
+
+
+def get_runner_class(cfg):
+    """
+    Get runner class from config. Default to epoch-based runner.
+    """
+    runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base"))
+
+    return runner_cls
+
+
+def main():
+    registry.mapping['paths']['cache_root'] = '.'
+    cfg = Config(parse_args())
+
+    job_id = now()
+
+    # init_distributed_mode(cfg)
+    setup_seeds(cfg)
+
+    # set after init_distributed_mode() to only log on master.
+    setup_logger()
+
+    wandb_run = wandb.init(
+        project=cfg.run_cfg.project_name,
+        entity=WANDB_ENTITY,
+        name=cfg.run_cfg.run_name
+    )
+
+    cfg.pretty_print()
+
+    task = tasks.setup_task(cfg)
+
+    # my report dataset
+    datasets = {}
+    datasets['mimic_cxr'] = {}
+    datasets['mimic_cxr']['train'] = MIMIC_CXR_Dataset(vis_processor=None, text_processor=None, vis_root=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0",
+                                                       split="train", cfg=cfg, truncate=None)
+    datasets['mimic_cxr']['train_val'] = MIMIC_CXR_Dataset(vis_processor=None, text_processor=None,
+                                                           vis_root=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0", split="train", cfg=cfg,
+                                                           truncate=1000)  # 1000
+    datasets['mimic_cxr']['val'] = MIMIC_CXR_Dataset(vis_processor=None, text_processor=None, vis_root=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0",
+                                                     split="validate", cfg=cfg, truncate=None)
+    datasets['mimic_cxr']['test'] = MIMIC_CXR_Dataset(vis_processor=None, text_processor=None, vis_root=f"{PATH_TO_MIMIC_CXR}/mimic-cxr-jpg/2.0.0",
+                                                      split="test", cfg=cfg, truncate=None)
+
+    model = task.build_model(cfg)
+    print(summary(model, input_size=None, device='cpu'))
+
+
+    if not cfg.run_cfg.evaluate:
+        ''' training code '''
+        runner = RunnerBase(
+            cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets
+        )
+
+        runner.train(wandb_run)
+
+
+    else:
+        ''' precompute Q-Former output embeddings for all images '''
+        model.cuda()
+        model.eval()
+
+        dataloader = DataLoader(datasets['mimic_cxr']['test'], batch_size=256, shuffle=False, num_workers=cfg.run_cfg.num_workers)
+        embeddings = {}
+        for i, batch in enumerate(tqdm(dataloader)):
+            qformer_embs, _ = model.forward_image(batch['image'].cuda())
+            for j, id in enumerate(batch['image_id']):
+                dicom = datasets['mimic_cxr']['test'].id_to_dicom[id.item()]
+                embeddings[dicom] = qformer_embs[j].cpu().detach().numpy()
+
+        # save embeddings
+        with open(f"pretraining/embs/{cfg.run_cfg.run_name}_embeddings_test.pkl", "wb") as f:
+            pickle.dump(embeddings, f)
+
+        dataloader = DataLoader(datasets['mimic_cxr']['val'], batch_size=256, shuffle=False, num_workers=cfg.run_cfg.num_workers)
+        embeddings = {}
+        for i, batch in enumerate(tqdm(dataloader)):
+            qformer_embs, _ = model.forward_image(batch['image'].cuda())
+            for j, id in enumerate(batch['image_id']):
+                dicom = datasets['mimic_cxr']['val'].id_to_dicom[id.item()]
+                embeddings[dicom] = qformer_embs[j].cpu().detach().numpy()
+
+        # save embeddings
+        with open(f"pretraining/embs/{cfg.run_cfg.run_name}_embeddings_val.pkl", "wb") as f:
+            pickle.dump(embeddings, f)
+
+        dataloader = DataLoader(datasets['mimic_cxr']['train'], batch_size=256, shuffle=False, num_workers=cfg.run_cfg.num_workers)
+        embeddings = {}
+        for i, batch in enumerate(tqdm(dataloader)):
+            qformer_embs, _ = model.forward_image(batch['image'].cuda())
+            for j, id in enumerate(batch['image_id']):
+                dicom = datasets['mimic_cxr']['train'].id_to_dicom[id.item()]
+                embeddings[dicom] = qformer_embs[j].cpu().detach().numpy()
+
+        # save embeddings
+        with open(f"pretraining/embs/{cfg.run_cfg.run_name}_embeddings_train.pkl", "wb") as f:
+            pickle.dump(embeddings, f)
+
+
+if __name__ == "__main__":
+    main()