Diff of /chexbert/src/label.py [000000] .. [4abb48]

Switch to unified view

a b/chexbert/src/label.py
1
import os
2
import argparse
3
import torch
4
import torch.nn as nn
5
import pandas as pd
6
import numpy as np
7
import utils
8
from models.bert_labeler import bert_labeler
9
from bert_tokenizer import tokenize
10
from transformers import BertTokenizer
11
from collections import OrderedDict
12
from datasets.unlabeled_dataset import UnlabeledDataset
13
from constants import *
14
from tqdm import tqdm
15
16
def collate_fn_no_labels(sample_list):
17
    """Custom collate function to pad reports in each batch to the max len,
18
       where the reports have no associated labels
19
    @param sample_list (List): A list of samples. Each sample is a dictionary with
20
                               keys 'imp', 'len' as returned by the __getitem__
21
                               function of ImpressionsDataset
22
23
    @returns batch (dictionary): A dictionary with keys 'imp' and 'len' but now
24
                                 'imp' is a tensor with padding and batch size as the
25
                                 first dimension. 'len' is a list of the length of 
26
                                 each sequence in batch
27
    """
28
    tensor_list = [s['imp'] for s in sample_list]
29
    batched_imp = torch.nn.utils.rnn.pad_sequence(tensor_list,
30
                                                  batch_first=True,
31
                                                  padding_value=PAD_IDX)
32
    len_list = [s['len'] for s in sample_list]
33
    batch = {'imp': batched_imp, 'len': len_list}
34
    return batch
35
36
def load_unlabeled_data(csv_path, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS,
37
                        shuffle=False):
38
    """ Create UnlabeledDataset object for the input reports
39
    @param csv_path (string): path to csv file containing reports
40
    @param batch_size (int): the batch size. As per the BERT repository, the max batch size
41
                             that can fit on a TITAN XP is 6 if the max sequence length
42
                             is 512, which is our case. We have 3 TITAN XP's
43
    @param num_workers (int): how many worker processes to use to load data
44
    @param shuffle (bool): whether to shuffle the data or not  
45
    
46
    @returns loader (dataloader): dataloader object for the reports
47
    """
48
    collate_fn = collate_fn_no_labels
49
    dset = UnlabeledDataset(csv_path)
50
    loader = torch.utils.data.DataLoader(dset, batch_size=batch_size, shuffle=shuffle,
51
                                         num_workers=NUM_WORKERS, collate_fn=collate_fn)
52
    return loader
53
    
54
def label(checkpoint_path, csv_path):
55
    """Labels a dataset of reports
56
    @param checkpoint_path (string): location of saved model checkpoint 
57
    @param csv_path (string): location of csv with reports
58
59
    @returns y_pred (List[List[int]]): Labels for each of the 14 conditions, per report  
60
    """
61
    ld = load_unlabeled_data(csv_path)
62
    
63
    model = bert_labeler()
64
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
65
    if torch.cuda.device_count() > 0: #works even if only 1 GPU available
66
        print("Using", torch.cuda.device_count(), "GPUs!")
67
        model = nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count()))) #to utilize multiple GPU's
68
        model = model.to(device)
69
        checkpoint = torch.load(checkpoint_path)
70
        model.load_state_dict(checkpoint['model_state_dict'])
71
    else:
72
        checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
73
        new_state_dict = OrderedDict()
74
        for k, v in checkpoint['model_state_dict'].items():
75
            name = k[7:] # remove `module.`
76
            new_state_dict[name] = v
77
        model.load_state_dict(new_state_dict)
78
        
79
    was_training = model.training
80
    model.eval()
81
    y_pred = [[] for _ in range(len(CONDITIONS))]
82
83
    print("\nBegin report impression labeling. The progress bar counts the # of batches completed:")
84
    print("The batch size is %d" % BATCH_SIZE)
85
    with torch.no_grad():
86
        for i, data in enumerate(tqdm(ld)):
87
            batch = data['imp'] #(batch_size, max_len)
88
            batch = batch.to(device)
89
            src_len = data['len']
90
            batch_size = batch.shape[0]
91
            attn_mask = utils.generate_attention_masks(batch, src_len, device)
92
93
            out = model(batch, attn_mask)
94
95
            for j in range(len(out)):
96
                curr_y_pred = out[j].argmax(dim=1) #shape is (batch_size)
97
                y_pred[j].append(curr_y_pred)
98
99
        for j in range(len(y_pred)):
100
            y_pred[j] = torch.cat(y_pred[j], dim=0)
101
             
102
    if was_training:
103
        model.train()
104
105
    y_pred = [t.tolist() for t in y_pred]
106
    return y_pred
107
108
def save_preds(y_pred, csv_path, out_path):
109
    """Save predictions as out_path/labeled_reports.csv 
110
    @param y_pred (List[List[int]]): list of predictions for each report
111
    @param csv_path (string): path to csv containing reports
112
    @param out_path (string): path to output directory
113
    """
114
    y_pred = np.array(y_pred)
115
    y_pred = y_pred.T
116
    
117
    df = pd.DataFrame(y_pred, columns=CONDITIONS)
118
    findings = pd.read_csv(csv_path, header=None)[0]
119
120
    # dicom was used for labeling training set, but is not available for labeling predictions
121
    # dicom_ids = pd.read_csv(csv_path)['dicom_id']
122
123
    # df['dicom_id'] = dicom_ids.tolist()
124
    df['findings'] = findings.tolist()
125
    new_cols = ['findings'] +CONDITIONS #['dicom_id']
126
    df = df[new_cols]
127
128
    df.replace(0, np.nan, inplace=True) #blank class is NaN
129
    df.replace(3, -1, inplace=True)     #uncertain class is -1
130
    df.replace(2, 0, inplace=True)      #negative class is 0 
131
    
132
    df.to_csv(out_path, index=False)
133
134
if __name__ == '__main__':
135
    parser = argparse.ArgumentParser(description='Label a csv file containing radiology reports')
136
    parser.add_argument('-d', '--data', type=str, nargs='?', required=True,
137
                        help='path to csv containing reports. The reports should be \
138
                              under the \"Report Impression\" column')
139
    parser.add_argument('-o', '--output_dir', type=str, nargs='?', required=True,
140
                        help='path to intended output folder')
141
    parser.add_argument('-c', '--checkpoint', type=str, nargs='?', required=True,
142
                        help='path to the pytorch checkpoint')
143
    args = parser.parse_args()
144
    csv_path = args.data
145
    out_path = args.output_dir
146
    checkpoint_path = args.checkpoint
147
148
    y_pred = label(checkpoint_path, csv_path)
149
    save_preds(y_pred, csv_path, out_path)