import os
import argparse
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import utils
from models.bert_labeler import bert_labeler
from bert_tokenizer import tokenize
from transformers import BertTokenizer
from collections import OrderedDict
from datasets.unlabeled_dataset import UnlabeledDataset
from constants import *
from tqdm import tqdm
def collate_fn_no_labels(sample_list):
"""Custom collate function to pad reports in each batch to the max len,
where the reports have no associated labels
@param sample_list (List): A list of samples. Each sample is a dictionary with
keys 'imp', 'len' as returned by the __getitem__
function of ImpressionsDataset
@returns batch (dictionary): A dictionary with keys 'imp' and 'len' but now
'imp' is a tensor with padding and batch size as the
first dimension. 'len' is a list of the length of
each sequence in batch
"""
tensor_list = [s['imp'] for s in sample_list]
batched_imp = torch.nn.utils.rnn.pad_sequence(tensor_list,
batch_first=True,
padding_value=PAD_IDX)
len_list = [s['len'] for s in sample_list]
batch = {'imp': batched_imp, 'len': len_list}
return batch
def load_unlabeled_data(csv_path, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS,
shuffle=False):
""" Create UnlabeledDataset object for the input reports
@param csv_path (string): path to csv file containing reports
@param batch_size (int): the batch size. As per the BERT repository, the max batch size
that can fit on a TITAN XP is 6 if the max sequence length
is 512, which is our case. We have 3 TITAN XP's
@param num_workers (int): how many worker processes to use to load data
@param shuffle (bool): whether to shuffle the data or not
@returns loader (dataloader): dataloader object for the reports
"""
collate_fn = collate_fn_no_labels
dset = UnlabeledDataset(csv_path)
loader = torch.utils.data.DataLoader(dset, batch_size=batch_size, shuffle=shuffle,
num_workers=NUM_WORKERS, collate_fn=collate_fn)
return loader
def label(checkpoint_path, csv_path):
"""Labels a dataset of reports
@param checkpoint_path (string): location of saved model checkpoint
@param csv_path (string): location of csv with reports
@returns y_pred (List[List[int]]): Labels for each of the 14 conditions, per report
"""
ld = load_unlabeled_data(csv_path)
model = bert_labeler()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() > 0: #works even if only 1 GPU available
print("Using", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count()))) #to utilize multiple GPU's
model = model.to(device)
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['model_state_dict'])
else:
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
new_state_dict = OrderedDict()
for k, v in checkpoint['model_state_dict'].items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
was_training = model.training
model.eval()
y_pred = [[] for _ in range(len(CONDITIONS))]
print("\nBegin report impression labeling. The progress bar counts the # of batches completed:")
print("The batch size is %d" % BATCH_SIZE)
with torch.no_grad():
for i, data in enumerate(tqdm(ld)):
batch = data['imp'] #(batch_size, max_len)
batch = batch.to(device)
src_len = data['len']
batch_size = batch.shape[0]
attn_mask = utils.generate_attention_masks(batch, src_len, device)
out = model(batch, attn_mask)
for j in range(len(out)):
curr_y_pred = out[j].argmax(dim=1) #shape is (batch_size)
y_pred[j].append(curr_y_pred)
for j in range(len(y_pred)):
y_pred[j] = torch.cat(y_pred[j], dim=0)
if was_training:
model.train()
y_pred = [t.tolist() for t in y_pred]
return y_pred
def save_preds(y_pred, csv_path, out_path):
"""Save predictions as out_path/labeled_reports.csv
@param y_pred (List[List[int]]): list of predictions for each report
@param csv_path (string): path to csv containing reports
@param out_path (string): path to output directory
"""
y_pred = np.array(y_pred)
y_pred = y_pred.T
df = pd.DataFrame(y_pred, columns=CONDITIONS)
findings = pd.read_csv(csv_path, header=None)[0]
# dicom was used for labeling training set, but is not available for labeling predictions
# dicom_ids = pd.read_csv(csv_path)['dicom_id']
# df['dicom_id'] = dicom_ids.tolist()
df['findings'] = findings.tolist()
new_cols = ['findings'] +CONDITIONS #['dicom_id']
df = df[new_cols]
df.replace(0, np.nan, inplace=True) #blank class is NaN
df.replace(3, -1, inplace=True) #uncertain class is -1
df.replace(2, 0, inplace=True) #negative class is 0
df.to_csv(out_path, index=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Label a csv file containing radiology reports')
parser.add_argument('-d', '--data', type=str, nargs='?', required=True,
help='path to csv containing reports. The reports should be \
under the \"Report Impression\" column')
parser.add_argument('-o', '--output_dir', type=str, nargs='?', required=True,
help='path to intended output folder')
parser.add_argument('-c', '--checkpoint', type=str, nargs='?', required=True,
help='path to the pytorch checkpoint')
args = parser.parse_args()
csv_path = args.data
out_path = args.output_dir
checkpoint_path = args.checkpoint
y_pred = label(checkpoint_path, csv_path)
save_preds(y_pred, csv_path, out_path)