Diff of /chexbert/src/label.py [000000] .. [4abb48]

Switch to side-by-side view

--- a
+++ b/chexbert/src/label.py
@@ -0,0 +1,149 @@
+import os
+import argparse
+import torch
+import torch.nn as nn
+import pandas as pd
+import numpy as np
+import utils
+from models.bert_labeler import bert_labeler
+from bert_tokenizer import tokenize
+from transformers import BertTokenizer
+from collections import OrderedDict
+from datasets.unlabeled_dataset import UnlabeledDataset
+from constants import *
+from tqdm import tqdm
+
+def collate_fn_no_labels(sample_list):
+    """Custom collate function to pad reports in each batch to the max len,
+       where the reports have no associated labels
+    @param sample_list (List): A list of samples. Each sample is a dictionary with
+                               keys 'imp', 'len' as returned by the __getitem__
+                               function of ImpressionsDataset
+
+    @returns batch (dictionary): A dictionary with keys 'imp' and 'len' but now
+                                 'imp' is a tensor with padding and batch size as the
+                                 first dimension. 'len' is a list of the length of 
+                                 each sequence in batch
+    """
+    tensor_list = [s['imp'] for s in sample_list]
+    batched_imp = torch.nn.utils.rnn.pad_sequence(tensor_list,
+                                                  batch_first=True,
+                                                  padding_value=PAD_IDX)
+    len_list = [s['len'] for s in sample_list]
+    batch = {'imp': batched_imp, 'len': len_list}
+    return batch
+
+def load_unlabeled_data(csv_path, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS,
+                        shuffle=False):
+    """ Create UnlabeledDataset object for the input reports
+    @param csv_path (string): path to csv file containing reports
+    @param batch_size (int): the batch size. As per the BERT repository, the max batch size
+                             that can fit on a TITAN XP is 6 if the max sequence length
+                             is 512, which is our case. We have 3 TITAN XP's
+    @param num_workers (int): how many worker processes to use to load data
+    @param shuffle (bool): whether to shuffle the data or not  
+    
+    @returns loader (dataloader): dataloader object for the reports
+    """
+    collate_fn = collate_fn_no_labels
+    dset = UnlabeledDataset(csv_path)
+    loader = torch.utils.data.DataLoader(dset, batch_size=batch_size, shuffle=shuffle,
+                                         num_workers=NUM_WORKERS, collate_fn=collate_fn)
+    return loader
+    
+def label(checkpoint_path, csv_path):
+    """Labels a dataset of reports
+    @param checkpoint_path (string): location of saved model checkpoint 
+    @param csv_path (string): location of csv with reports
+
+    @returns y_pred (List[List[int]]): Labels for each of the 14 conditions, per report  
+    """
+    ld = load_unlabeled_data(csv_path)
+    
+    model = bert_labeler()
+    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
+    if torch.cuda.device_count() > 0: #works even if only 1 GPU available
+        print("Using", torch.cuda.device_count(), "GPUs!")
+        model = nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count()))) #to utilize multiple GPU's
+        model = model.to(device)
+        checkpoint = torch.load(checkpoint_path)
+        model.load_state_dict(checkpoint['model_state_dict'])
+    else:
+        checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
+        new_state_dict = OrderedDict()
+        for k, v in checkpoint['model_state_dict'].items():
+            name = k[7:] # remove `module.`
+            new_state_dict[name] = v
+        model.load_state_dict(new_state_dict)
+        
+    was_training = model.training
+    model.eval()
+    y_pred = [[] for _ in range(len(CONDITIONS))]
+
+    print("\nBegin report impression labeling. The progress bar counts the # of batches completed:")
+    print("The batch size is %d" % BATCH_SIZE)
+    with torch.no_grad():
+        for i, data in enumerate(tqdm(ld)):
+            batch = data['imp'] #(batch_size, max_len)
+            batch = batch.to(device)
+            src_len = data['len']
+            batch_size = batch.shape[0]
+            attn_mask = utils.generate_attention_masks(batch, src_len, device)
+
+            out = model(batch, attn_mask)
+
+            for j in range(len(out)):
+                curr_y_pred = out[j].argmax(dim=1) #shape is (batch_size)
+                y_pred[j].append(curr_y_pred)
+
+        for j in range(len(y_pred)):
+            y_pred[j] = torch.cat(y_pred[j], dim=0)
+             
+    if was_training:
+        model.train()
+
+    y_pred = [t.tolist() for t in y_pred]
+    return y_pred
+
+def save_preds(y_pred, csv_path, out_path):
+    """Save predictions as out_path/labeled_reports.csv 
+    @param y_pred (List[List[int]]): list of predictions for each report
+    @param csv_path (string): path to csv containing reports
+    @param out_path (string): path to output directory
+    """
+    y_pred = np.array(y_pred)
+    y_pred = y_pred.T
+    
+    df = pd.DataFrame(y_pred, columns=CONDITIONS)
+    findings = pd.read_csv(csv_path, header=None)[0]
+
+    # dicom was used for labeling training set, but is not available for labeling predictions
+    # dicom_ids = pd.read_csv(csv_path)['dicom_id']
+
+    # df['dicom_id'] = dicom_ids.tolist()
+    df['findings'] = findings.tolist()
+    new_cols = ['findings'] +CONDITIONS #['dicom_id']
+    df = df[new_cols]
+
+    df.replace(0, np.nan, inplace=True) #blank class is NaN
+    df.replace(3, -1, inplace=True)     #uncertain class is -1
+    df.replace(2, 0, inplace=True)      #negative class is 0 
+    
+    df.to_csv(out_path, index=False)
+
+if __name__ == '__main__':
+    parser = argparse.ArgumentParser(description='Label a csv file containing radiology reports')
+    parser.add_argument('-d', '--data', type=str, nargs='?', required=True,
+                        help='path to csv containing reports. The reports should be \
+                              under the \"Report Impression\" column')
+    parser.add_argument('-o', '--output_dir', type=str, nargs='?', required=True,
+                        help='path to intended output folder')
+    parser.add_argument('-c', '--checkpoint', type=str, nargs='?', required=True,
+                        help='path to the pytorch checkpoint')
+    args = parser.parse_args()
+    csv_path = args.data
+    out_path = args.output_dir
+    checkpoint_path = args.checkpoint
+
+    y_pred = label(checkpoint_path, csv_path)
+    save_preds(y_pred, csv_path, out_path)