--- a +++ b/chexbert/src/label.py @@ -0,0 +1,149 @@ +import os +import argparse +import torch +import torch.nn as nn +import pandas as pd +import numpy as np +import utils +from models.bert_labeler import bert_labeler +from bert_tokenizer import tokenize +from transformers import BertTokenizer +from collections import OrderedDict +from datasets.unlabeled_dataset import UnlabeledDataset +from constants import * +from tqdm import tqdm + +def collate_fn_no_labels(sample_list): + """Custom collate function to pad reports in each batch to the max len, + where the reports have no associated labels + @param sample_list (List): A list of samples. Each sample is a dictionary with + keys 'imp', 'len' as returned by the __getitem__ + function of ImpressionsDataset + + @returns batch (dictionary): A dictionary with keys 'imp' and 'len' but now + 'imp' is a tensor with padding and batch size as the + first dimension. 'len' is a list of the length of + each sequence in batch + """ + tensor_list = [s['imp'] for s in sample_list] + batched_imp = torch.nn.utils.rnn.pad_sequence(tensor_list, + batch_first=True, + padding_value=PAD_IDX) + len_list = [s['len'] for s in sample_list] + batch = {'imp': batched_imp, 'len': len_list} + return batch + +def load_unlabeled_data(csv_path, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS, + shuffle=False): + """ Create UnlabeledDataset object for the input reports + @param csv_path (string): path to csv file containing reports + @param batch_size (int): the batch size. As per the BERT repository, the max batch size + that can fit on a TITAN XP is 6 if the max sequence length + is 512, which is our case. We have 3 TITAN XP's + @param num_workers (int): how many worker processes to use to load data + @param shuffle (bool): whether to shuffle the data or not + + @returns loader (dataloader): dataloader object for the reports + """ + collate_fn = collate_fn_no_labels + dset = UnlabeledDataset(csv_path) + loader = torch.utils.data.DataLoader(dset, batch_size=batch_size, shuffle=shuffle, + num_workers=NUM_WORKERS, collate_fn=collate_fn) + return loader + +def label(checkpoint_path, csv_path): + """Labels a dataset of reports + @param checkpoint_path (string): location of saved model checkpoint + @param csv_path (string): location of csv with reports + + @returns y_pred (List[List[int]]): Labels for each of the 14 conditions, per report + """ + ld = load_unlabeled_data(csv_path) + + model = bert_labeler() + device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + if torch.cuda.device_count() > 0: #works even if only 1 GPU available + print("Using", torch.cuda.device_count(), "GPUs!") + model = nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count()))) #to utilize multiple GPU's + model = model.to(device) + checkpoint = torch.load(checkpoint_path) + model.load_state_dict(checkpoint['model_state_dict']) + else: + checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu')) + new_state_dict = OrderedDict() + for k, v in checkpoint['model_state_dict'].items(): + name = k[7:] # remove `module.` + new_state_dict[name] = v + model.load_state_dict(new_state_dict) + + was_training = model.training + model.eval() + y_pred = [[] for _ in range(len(CONDITIONS))] + + print("\nBegin report impression labeling. The progress bar counts the # of batches completed:") + print("The batch size is %d" % BATCH_SIZE) + with torch.no_grad(): + for i, data in enumerate(tqdm(ld)): + batch = data['imp'] #(batch_size, max_len) + batch = batch.to(device) + src_len = data['len'] + batch_size = batch.shape[0] + attn_mask = utils.generate_attention_masks(batch, src_len, device) + + out = model(batch, attn_mask) + + for j in range(len(out)): + curr_y_pred = out[j].argmax(dim=1) #shape is (batch_size) + y_pred[j].append(curr_y_pred) + + for j in range(len(y_pred)): + y_pred[j] = torch.cat(y_pred[j], dim=0) + + if was_training: + model.train() + + y_pred = [t.tolist() for t in y_pred] + return y_pred + +def save_preds(y_pred, csv_path, out_path): + """Save predictions as out_path/labeled_reports.csv + @param y_pred (List[List[int]]): list of predictions for each report + @param csv_path (string): path to csv containing reports + @param out_path (string): path to output directory + """ + y_pred = np.array(y_pred) + y_pred = y_pred.T + + df = pd.DataFrame(y_pred, columns=CONDITIONS) + findings = pd.read_csv(csv_path, header=None)[0] + + # dicom was used for labeling training set, but is not available for labeling predictions + # dicom_ids = pd.read_csv(csv_path)['dicom_id'] + + # df['dicom_id'] = dicom_ids.tolist() + df['findings'] = findings.tolist() + new_cols = ['findings'] +CONDITIONS #['dicom_id'] + df = df[new_cols] + + df.replace(0, np.nan, inplace=True) #blank class is NaN + df.replace(3, -1, inplace=True) #uncertain class is -1 + df.replace(2, 0, inplace=True) #negative class is 0 + + df.to_csv(out_path, index=False) + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Label a csv file containing radiology reports') + parser.add_argument('-d', '--data', type=str, nargs='?', required=True, + help='path to csv containing reports. The reports should be \ + under the \"Report Impression\" column') + parser.add_argument('-o', '--output_dir', type=str, nargs='?', required=True, + help='path to intended output folder') + parser.add_argument('-c', '--checkpoint', type=str, nargs='?', required=True, + help='path to the pytorch checkpoint') + args = parser.parse_args() + csv_path = args.data + out_path = args.output_dir + checkpoint_path = args.checkpoint + + y_pred = label(checkpoint_path, csv_path) + save_preds(y_pred, csv_path, out_path)