|
a |
|
b/BraTs18Challege/Vnet/util.py |
|
|
1 |
from __future__ import print_function, division |
|
|
2 |
import SimpleITK as sitk |
|
|
3 |
import numpy as np |
|
|
4 |
import cv2 |
|
|
5 |
import os |
|
|
6 |
from glob import glob |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
def load_itk(filename): |
|
|
10 |
""" |
|
|
11 |
load mhd files and normalization 0-255 |
|
|
12 |
:param filename: |
|
|
13 |
:return: |
|
|
14 |
""" |
|
|
15 |
rescalFilt = sitk.RescaleIntensityImageFilter() |
|
|
16 |
rescalFilt.SetOutputMaximum(255) |
|
|
17 |
rescalFilt.SetOutputMinimum(0) |
|
|
18 |
# Reads the image using SimpleITK |
|
|
19 |
itkimage = rescalFilt.Execute(sitk.Cast(sitk.ReadImage(filename), sitk.sitkFloat32)) |
|
|
20 |
return itkimage |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
def removesmallConnectedCompont(sitk_maskimg, rate=0.5): |
|
|
24 |
cc = sitk.ConnectedComponent(sitk_maskimg) |
|
|
25 |
stats = sitk.LabelIntensityStatisticsImageFilter() |
|
|
26 |
stats.Execute(cc, sitk_maskimg) |
|
|
27 |
maxlabel = 0 |
|
|
28 |
maxsize = 0 |
|
|
29 |
for l in stats.GetLabels(): |
|
|
30 |
size = stats.GetPhysicalSize(l) |
|
|
31 |
if maxsize < size: |
|
|
32 |
maxlabel = l |
|
|
33 |
maxsize = size |
|
|
34 |
|
|
|
35 |
not_remove = [] |
|
|
36 |
for l in stats.GetLabels(): |
|
|
37 |
size = stats.GetPhysicalSize(l) |
|
|
38 |
if size > maxsize * rate: |
|
|
39 |
not_remove.append(l) |
|
|
40 |
labelmaskimage = sitk.GetArrayFromImage(cc) |
|
|
41 |
outmask = labelmaskimage.copy() |
|
|
42 |
outmask[labelmaskimage != maxlabel] = 0 |
|
|
43 |
for i in range(len(not_remove)): |
|
|
44 |
outmask[labelmaskimage == not_remove[i]] = 255 |
|
|
45 |
return outmask |
|
|
46 |
|
|
|
47 |
|
|
|
48 |
def getLargestConnectedCompont(sitk_maskimg): |
|
|
49 |
cc = sitk.ConnectedComponent(sitk_maskimg) |
|
|
50 |
stats = sitk.LabelIntensityStatisticsImageFilter() |
|
|
51 |
stats.Execute(cc, sitk_maskimg) |
|
|
52 |
maxlabel = 0 |
|
|
53 |
maxsize = 0 |
|
|
54 |
for l in stats.GetLabels(): |
|
|
55 |
size = stats.GetPhysicalSize(l) |
|
|
56 |
if maxsize < size: |
|
|
57 |
maxlabel = l |
|
|
58 |
maxsize = size |
|
|
59 |
|
|
|
60 |
labelmaskimage = sitk.GetArrayFromImage(cc) |
|
|
61 |
outmask = labelmaskimage.copy() |
|
|
62 |
outmask[labelmaskimage == maxlabel] = 255 |
|
|
63 |
outmask[labelmaskimage != maxlabel] = 0 |
|
|
64 |
return outmask |
|
|
65 |
|
|
|
66 |
|
|
|
67 |
def morphologicaloperation(sitk_maskimg, kernelsize, name='open'): |
|
|
68 |
if name == 'open': |
|
|
69 |
morphoimage = sitk.BinaryMorphologicalOpening(sitk_maskimg, [kernelsize, kernelsize, kernelsize]) |
|
|
70 |
labelmaskimage = sitk.GetArrayFromImage(morphoimage) |
|
|
71 |
outmask = labelmaskimage.copy() |
|
|
72 |
outmask[labelmaskimage == 1.0] = 255 |
|
|
73 |
return outmask |
|
|
74 |
if name == 'close': |
|
|
75 |
morphoimage = sitk.BinaryMorphologicalClosing(sitk_maskimg, [kernelsize, kernelsize, kernelsize]) |
|
|
76 |
labelmaskimage = sitk.GetArrayFromImage(morphoimage) |
|
|
77 |
outmask = labelmaskimage.copy() |
|
|
78 |
outmask[labelmaskimage == 1.0] = 255 |
|
|
79 |
return outmask |
|
|
80 |
if name == 'dilate': |
|
|
81 |
morphoimage = sitk.BinaryDilate(sitk_maskimg, [kernelsize, kernelsize, kernelsize]) |
|
|
82 |
labelmaskimage = sitk.GetArrayFromImage(morphoimage) |
|
|
83 |
outmask = labelmaskimage.copy() |
|
|
84 |
outmask[labelmaskimage == 1.0] = 255 |
|
|
85 |
return outmask |
|
|
86 |
if name == 'erode': |
|
|
87 |
morphoimage = sitk.BinaryErode(sitk_maskimg, [kernelsize, kernelsize, kernelsize]) |
|
|
88 |
labelmaskimage = sitk.GetArrayFromImage(morphoimage) |
|
|
89 |
outmask = labelmaskimage.copy() |
|
|
90 |
outmask[labelmaskimage == 1.0] = 255 |
|
|
91 |
return outmask |
|
|
92 |
|
|
|
93 |
|
|
|
94 |
def gettestiamge(): |
|
|
95 |
src = load_itk("D:\Data\LIST\LITS-Challenge-Test-Data\\test-volume-" + str(51) + ".nii") |
|
|
96 |
srcimg = sitk.GetArrayFromImage(src) |
|
|
97 |
for i in range(np.shape(srcimg)[0]): |
|
|
98 |
image = srcimg[i] |
|
|
99 |
image = np.clip(image, 0, 255).astype('uint8') |
|
|
100 |
cv2.imwrite("D:\Data\LIST\LITS-Challenge-Test-Data\\" + str(51) + "\\" + str(i) + ".bmp", image) |
|
|
101 |
|
|
|
102 |
|
|
|
103 |
def getmaxsizeimage(): |
|
|
104 |
srcpath = "D:\Data\LIST\LITS-Challenge-Test-Data\\test-volume-" + str(38) + ".nii" |
|
|
105 |
maskpath = "D:\Data\LIST\\test\PredictMask\\38" |
|
|
106 |
|
|
|
107 |
src = load_itk(srcpath) |
|
|
108 |
srcimg = sitk.GetArrayFromImage(src) |
|
|
109 |
|
|
|
110 |
maskimage = np.empty(shape=np.shape(srcimg), dtype=np.uint8) |
|
|
111 |
index = 0 |
|
|
112 |
for _ in os.listdir(maskpath): |
|
|
113 |
masktmp = cv2.imread(maskpath + "/" + str(index) + ".bmp", cv2.IMREAD_GRAYSCALE) |
|
|
114 |
maskimage[index, :, :] = masktmp |
|
|
115 |
index += 1 |
|
|
116 |
|
|
|
117 |
sitk_maskimg = sitk.GetImageFromArray(maskimage) |
|
|
118 |
origin = np.array(src.GetOrigin()) |
|
|
119 |
# Read the spacing along each dimension |
|
|
120 |
spacing = np.array(src.GetSpacing()) |
|
|
121 |
sitk_maskimg.SetSpacing(spacing) |
|
|
122 |
sitk_maskimg.SetOrigin(origin) |
|
|
123 |
maskimage = getLargestConnectedCompont(sitk_maskimg) |
|
|
124 |
for i in range(np.shape(maskimage)[0]): |
|
|
125 |
image = maskimage[i] |
|
|
126 |
image = np.clip(image, 0, 255).astype('uint8') |
|
|
127 |
cv2.imwrite("D:\Data\LIST\\test\PredictMask\\38_1\\" + str(i) + ".bmp", image) |
|
|
128 |
|
|
|
129 |
|
|
|
130 |
def save_npy2csv(path, name, labelnum=1): |
|
|
131 |
""" |
|
|
132 |
this is for classify |
|
|
133 |
:param path: |
|
|
134 |
:param name:file name |
|
|
135 |
:param labelnum:classify label |
|
|
136 |
:param label: |
|
|
137 |
:return: |
|
|
138 |
""" |
|
|
139 |
out = open(name, 'w') |
|
|
140 |
file_list = glob(path + "*.npy") |
|
|
141 |
out.writelines("index" + "," + "filename" + "\n") |
|
|
142 |
for index in range(len(file_list)): |
|
|
143 |
out.writelines(str(labelnum) + "," + file_list[index] + "\n") |
|
|
144 |
|
|
|
145 |
|
|
|
146 |
# gettestiamge() |
|
|
147 |
# getmaxsizeimage() |
|
|
148 |
# save_npy2csv("G:\Data\LIDC\LUNA16\classsification\\1_aug\\", "nodel_positive.csv", 1) |