[1bd6b2]: / BraTs18Challege / Vnet / util.py

Download this file

149 lines (127 with data), 5.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from __future__ import print_function, division
import SimpleITK as sitk
import numpy as np
import cv2
import os
from glob import glob
def load_itk(filename):
"""
load mhd files and normalization 0-255
:param filename:
:return:
"""
rescalFilt = sitk.RescaleIntensityImageFilter()
rescalFilt.SetOutputMaximum(255)
rescalFilt.SetOutputMinimum(0)
# Reads the image using SimpleITK
itkimage = rescalFilt.Execute(sitk.Cast(sitk.ReadImage(filename), sitk.sitkFloat32))
return itkimage
def removesmallConnectedCompont(sitk_maskimg, rate=0.5):
cc = sitk.ConnectedComponent(sitk_maskimg)
stats = sitk.LabelIntensityStatisticsImageFilter()
stats.Execute(cc, sitk_maskimg)
maxlabel = 0
maxsize = 0
for l in stats.GetLabels():
size = stats.GetPhysicalSize(l)
if maxsize < size:
maxlabel = l
maxsize = size
not_remove = []
for l in stats.GetLabels():
size = stats.GetPhysicalSize(l)
if size > maxsize * rate:
not_remove.append(l)
labelmaskimage = sitk.GetArrayFromImage(cc)
outmask = labelmaskimage.copy()
outmask[labelmaskimage != maxlabel] = 0
for i in range(len(not_remove)):
outmask[labelmaskimage == not_remove[i]] = 255
return outmask
def getLargestConnectedCompont(sitk_maskimg):
cc = sitk.ConnectedComponent(sitk_maskimg)
stats = sitk.LabelIntensityStatisticsImageFilter()
stats.Execute(cc, sitk_maskimg)
maxlabel = 0
maxsize = 0
for l in stats.GetLabels():
size = stats.GetPhysicalSize(l)
if maxsize < size:
maxlabel = l
maxsize = size
labelmaskimage = sitk.GetArrayFromImage(cc)
outmask = labelmaskimage.copy()
outmask[labelmaskimage == maxlabel] = 255
outmask[labelmaskimage != maxlabel] = 0
return outmask
def morphologicaloperation(sitk_maskimg, kernelsize, name='open'):
if name == 'open':
morphoimage = sitk.BinaryMorphologicalOpening(sitk_maskimg, [kernelsize, kernelsize, kernelsize])
labelmaskimage = sitk.GetArrayFromImage(morphoimage)
outmask = labelmaskimage.copy()
outmask[labelmaskimage == 1.0] = 255
return outmask
if name == 'close':
morphoimage = sitk.BinaryMorphologicalClosing(sitk_maskimg, [kernelsize, kernelsize, kernelsize])
labelmaskimage = sitk.GetArrayFromImage(morphoimage)
outmask = labelmaskimage.copy()
outmask[labelmaskimage == 1.0] = 255
return outmask
if name == 'dilate':
morphoimage = sitk.BinaryDilate(sitk_maskimg, [kernelsize, kernelsize, kernelsize])
labelmaskimage = sitk.GetArrayFromImage(morphoimage)
outmask = labelmaskimage.copy()
outmask[labelmaskimage == 1.0] = 255
return outmask
if name == 'erode':
morphoimage = sitk.BinaryErode(sitk_maskimg, [kernelsize, kernelsize, kernelsize])
labelmaskimage = sitk.GetArrayFromImage(morphoimage)
outmask = labelmaskimage.copy()
outmask[labelmaskimage == 1.0] = 255
return outmask
def gettestiamge():
src = load_itk("D:\Data\LIST\LITS-Challenge-Test-Data\\test-volume-" + str(51) + ".nii")
srcimg = sitk.GetArrayFromImage(src)
for i in range(np.shape(srcimg)[0]):
image = srcimg[i]
image = np.clip(image, 0, 255).astype('uint8')
cv2.imwrite("D:\Data\LIST\LITS-Challenge-Test-Data\\" + str(51) + "\\" + str(i) + ".bmp", image)
def getmaxsizeimage():
srcpath = "D:\Data\LIST\LITS-Challenge-Test-Data\\test-volume-" + str(38) + ".nii"
maskpath = "D:\Data\LIST\\test\PredictMask\\38"
src = load_itk(srcpath)
srcimg = sitk.GetArrayFromImage(src)
maskimage = np.empty(shape=np.shape(srcimg), dtype=np.uint8)
index = 0
for _ in os.listdir(maskpath):
masktmp = cv2.imread(maskpath + "/" + str(index) + ".bmp", cv2.IMREAD_GRAYSCALE)
maskimage[index, :, :] = masktmp
index += 1
sitk_maskimg = sitk.GetImageFromArray(maskimage)
origin = np.array(src.GetOrigin())
# Read the spacing along each dimension
spacing = np.array(src.GetSpacing())
sitk_maskimg.SetSpacing(spacing)
sitk_maskimg.SetOrigin(origin)
maskimage = getLargestConnectedCompont(sitk_maskimg)
for i in range(np.shape(maskimage)[0]):
image = maskimage[i]
image = np.clip(image, 0, 255).astype('uint8')
cv2.imwrite("D:\Data\LIST\\test\PredictMask\\38_1\\" + str(i) + ".bmp", image)
def save_npy2csv(path, name, labelnum=1):
"""
this is for classify
:param path:
:param name:file name
:param labelnum:classify label
:param label:
:return:
"""
out = open(name, 'w')
file_list = glob(path + "*.npy")
out.writelines("index" + "," + "filename" + "\n")
for index in range(len(file_list)):
out.writelines(str(labelnum) + "," + file_list[index] + "\n")
# gettestiamge()
# getmaxsizeimage()
# save_npy2csv("G:\Data\LIDC\LUNA16\classsification\\1_aug\\", "nodel_positive.csv", 1)