--- a +++ b/Notebooks/17_confusion_matrix_test.ipynb @@ -0,0 +1,144 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import torch\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "y = torch.Tensor([[1,0,0,1,0], [0,0,0,1,1]]).numpy()\n", + "y_hat = torch.Tensor([[1,1,0,1,0], [1,1,0,0,1]]).numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.float64(0.6)" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "y_hat_binary = (y_hat > 0.5).astype(int)\n", + "accuracy = np.mean(y_hat_binary == y)\n", + "accuracy" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics import confusion_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0.])\n", + "tensor([1., 1., 0., 1., 0., 0., 1., 1., 1., 0., 0., 1., 0., 0.])\n" + ] + } + ], + "source": [ + "y_true = torch.Tensor([[1,0,0,1,0,0,0], [0,0,0,1,1,0,0]]).flatten()\n", + "y_pred = torch.Tensor([[1,1,0,1,0,0,1], [1,1,0,0,1,0,0]]).flatten()\n", + "\n", + "print(y_true)\n", + "print(y_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "6 4 1 3\n" + ] + } + ], + "source": [ + "tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()\n", + "print(tn, fp, fn, tp)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[6 4]\n", + " [1 3]]\n", + "tn fp\n", + "fn tp\n" + ] + } + ], + "source": [ + "print(confusion_matrix(y_true, y_pred))\n", + "print('tn fp\\nfn tp')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "master", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}