145 lines (144 with data), 2.8 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"y = torch.Tensor([[1,0,0,1,0], [0,0,0,1,1]]).numpy()\n",
"y_hat = torch.Tensor([[1,1,0,1,0], [1,1,0,0,1]]).numpy()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"np.float64(0.6)"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y_hat_binary = (y_hat > 0.5).astype(int)\n",
"accuracy = np.mean(y_hat_binary == y)\n",
"accuracy"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import confusion_matrix"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0.])\n",
"tensor([1., 1., 0., 1., 0., 0., 1., 1., 1., 0., 0., 1., 0., 0.])\n"
]
}
],
"source": [
"y_true = torch.Tensor([[1,0,0,1,0,0,0], [0,0,0,1,1,0,0]]).flatten()\n",
"y_pred = torch.Tensor([[1,1,0,1,0,0,1], [1,1,0,0,1,0,0]]).flatten()\n",
"\n",
"print(y_true)\n",
"print(y_pred)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"6 4 1 3\n"
]
}
],
"source": [
"tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()\n",
"print(tn, fp, fn, tp)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[6 4]\n",
" [1 3]]\n",
"tn fp\n",
"fn tp\n"
]
}
],
"source": [
"print(confusion_matrix(y_true, y_pred))\n",
"print('tn fp\\nfn tp')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "master",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}