--- a +++ b/sisfall_clean.py @@ -0,0 +1,565 @@ +import pandas as pd +import numpy as np +import warnings +import time +warnings.filterwarnings('ignore') +import matplotlib +matplotlib.use('TkAgg') +import matplotlib.pyplot as plt + +path = '/Users/mattjohnson/Desktop/Python2018/sisfall/SubjectDataFrames/acm_SA' + +subjectList = [] + +firstIndex = 1 +lastIndex = 4 + +print('*',firstIndex, 'to', lastIndex-1, '...') + +for i in range(firstIndex, lastIndex): + data = pd.read_csv(path + str(i).zfill(2) + '.csv') + data = data.drop('Unnamed: 0', axis=1) + df = data[['x1', 'y1', 'z1', 'x2', 'y2', 'z2', 'activity', 'subject', 'trial']] + subjectList.append(df) + +# Codes for ADLs +dailies = ['D01', 'D02', 'D03', 'D04', 'D05', 'D06', 'D07', 'D08', 'D09', 'D10', 'D11', 'D12', 'D13', 'D14', 'D15', + 'D16', 'D17', 'D18', 'D19'] +# Codes for Falls +falls = ['F01', 'F02', 'F03', 'F04', 'F05', 'F06', 'F07', 'F08', 'F09', 'F10', 'F11', 'F12', 'F13', 'F14', 'F15'] + +# Lists to hold dataframes sorted by activity (ADLs and Falls) +adl_list = [] +fall_list = [] +# Iterate through subject data and sort into ADLs and Falls +for s in subjectList: + for d in dailies: + tempdf = s[s['activity'] == d] + adl_list.append(tempdf) + + for f in falls: + tempdf = s[s['activity'] == f] + fall_list.append(tempdf) + + +# Titles for fall activities +fall_titles = ['Fall forward while walking caused by a slip', 'Fall backward while walking caused by a slip', + 'Lateral fall while walking caused by a slip', 'Fall forward while walking caused by a trip', + 'Fall forward while jogging caused by a trip', 'Vertical fall while walking caused by fainting', + 'Fall while walking, with use of hands in a table to dampen fall, caused by fainting', + 'Fall forward when trying to get up', 'Lateral fall when trying to get up', + 'Fall forward when trying to sit down', 'Fall backward when trying to sit down', 'Lateral fall when trying to sit down', + 'Fall forward while sitting, caused by fainting or falling asleep', + 'Fall backward while sitting, caused by fainting or falling asleep', + 'Lateral fall while sitting, caused by fainting or falling asleep'] +# Titles for ADLs +adl_titles = ['Walking slowly', 'Walking quickly', 'Jogging slowly', 'Jogging quickly', 'Walking upstairs and downstairs slowly', + 'Walking upstairs and downstairs quickly','Slowly sit in a half height chair, wait a moment, and up slowly', + 'Quickly sit in a half height chair, wait a moment, and up quickly', + 'Slowly sit in a low height chair, wait a moment, and up slowly','Quickly sit in a low height chair, wait a moment, and up quickly', + 'Sitting a moment, trying to get up, and collapse into a chair', + 'Sitting a moment, lying slowly, wait a moment, and sit again','Sitting a moment, lying quickly, wait a moment, and sit again', + 'Being on oneís back change to lateral position, wait a moment, and change to oneís back', + 'Standing, slowly bending at knees, and getting up', 'Standing, slowly bending without bending knees, and getting up', + 'Standing, get into a car, remain seated and get out of the car','Stumble while walking', + 'Gently jump without falling (trying to reach a high object)'] + + +from scipy.signal import butter, lfilter, freqz + +# Filter requirements. +order = 4 +fs = 200.0 # sample rate, Hz +cutoff = 5.0 # desired cutoff frequency of the filter, Hz + + +# From?????? +def butter_lowpass(cutoff, fs, order=5): + nyq = 0.5 * fs + normal_cutoff = cutoff / nyq + b, a = butter(order, normal_cutoff, btype='low', analog=False) + return b, a + + +def butter_lowpass_filter(data, cutoff, fs, order=5): + b, a = butter_lowpass(cutoff, fs, order=order) + y = lfilter(b, a, data) + return y + + +# Codes for trials +trials = ['R01', 'R02', 'R03', 'R04', 'R05'] +horiz_std_mag_THRESHOLD = 170 # Set threshold for Horizontal Standard Deviation Magnitude +horiz_vec_mag_THRESHOLD = 400 # Set threshold for Horizontal Sum Vector Magnitude +vector_mag_THRESHOLD = 900 # Set threshold for Sum Vector Magnitude +gyro_horiz_std_THRESHOLD = 170 + +# Lists to hold prepared fall and ADL dataframes +fall_df_list = [] +adl_df_list = [] +# Lists to hold sliding windows of 1.25s with a 50% overlap +windowList_adl = [] +windowList_fall = [] + +windowHighlights_adl = [] +falseAlarms = [] + + +# Method that takes in a dataframe and kind=['f', 'a'] and stores sliding windows of 1.25s +# with a 50% overlap +def sliding_window(dataframe, kind): + k = 0 + for i in range(0, len(dataframe) - 256, 128): + w = 256 # Size of sliding window (256 points at 200Hz = 1.25 seconds) + w1 = dataframe.iloc[i:i + w][:] + + if ((w1['horiz_std_mag9'].max() >= horiz_std_mag_THRESHOLD) * 1 + ( + w1['horiz_vector_mag9'].max() >= horiz_vec_mag_THRESHOLD) * 1 + + (w1['vm'].max() >= vector_mag_THRESHOLD) * 1 + ( + w1['gyro_horiz_std_mag'].max() >= gyro_horiz_std_THRESHOLD) * 1 >= 3): + w1['Fall'] = 1 + + if kind == 'a': + falseAlarms.append(k) + print('k:', k, 'i:', i, '\n') + print('False Alarm: hstd9:', w1['horiz_std_mag9'].max(), 'hvm9:', w1['horiz_vector_mag9'].max()) + print('\tvm:', w1['vm'].max(), 'hvm9:', 'ghstd:', w1['gyro_horiz_std_mag'].max()) + windowHighlights_adl.append(1) + else: + w1['Fall'] = 0 + if kind == 'a': + windowHighlights_adl.append(0) + + if kind == 'f': # If fall + windowList_fall.append(w1) + else: # If ADL + windowList_adl.append(w1) + k += 1 + + +# Method that takes in a kind=['f', 'a'] and prepares respective data +def prepare_data(kind): + if kind == 'f': # If fall + putList, takeList = fall_df_list, fall_list + else: # If ADL + putList, takeList = adl_df_list, adl_list + + start = time.time() # Timer for testing + + for i in range(0, len(takeList)): # Iterate through the takeList (fall_list or adl_list) + + my_df = takeList[i].copy() # copy dataframe from list + new_df = pd.DataFrame() # placeholder + + for trial in trials: # Iterate through trials (1-5) + + # Get relevant trial data + trial_df = my_df[my_df['trial'] == trial] + + tempdf = pd.DataFrame() # dataframe for putting into filter + # Low Pass Buttersworth Filter and remove bias + tempdf['ax'], tempdf['ay'], tempdf['az'] = trial_df['x1'], trial_df['y1'], trial_df['z1'] + tempdf = tempdf.reset_index(drop=True) + tempdf['fx'] = pd.Series(butter_lowpass_filter(trial_df['x1'], cutoff, fs, order)) + tempdf['fy'] = pd.Series(butter_lowpass_filter(trial_df['y1'], cutoff, fs, order)) + tempdf['fz'] = pd.Series(butter_lowpass_filter(trial_df['z1'], cutoff, fs, order)) + tempdf['bx'] = tempdf['fx'].diff() + tempdf['by'] = tempdf['fy'].diff() + tempdf['bz'] = tempdf['fz'].diff() + + tempdf = tempdf.reset_index(drop=True) + trial_df = trial_df.reset_index(drop=True) + tempdf['gx'], tempdf['gy'], tempdf['gz'] = trial_df['x2'], trial_df['y2'], trial_df['z2'] + + # Rolling averages + tempdf['y_roll'] = pd.Series(tempdf['by'].rolling(200).mean()) + tempdf['fy_roll'] = pd.Series(tempdf['fy'].rolling(200).mean()) + tempdf['gy_roll'] = pd.Series(tempdf['by'].rolling(200).mean()) + + # Rolling standard deviations + tempdf['bx_std'] = tempdf['bx'].rolling(200).std() + tempdf['by_std'] = tempdf['by'].rolling(200).std() + tempdf['bz_std'] = tempdf['bz'].rolling(200).std() + tempdf['fx_std'] = tempdf['fx'].rolling(200).std() + tempdf['fy_std'] = tempdf['fy'].rolling(200).std() + tempdf['fz_std'] = tempdf['fz'].rolling(200).std() + tempdf['gx_std'] = tempdf['fx'].rolling(200).std() + tempdf['gy_std'] = tempdf['fy'].rolling(200).std() + tempdf['gz_std'] = tempdf['fz'].rolling(200).std() + + + # Integral stuff + tempdf['xsum'] = pd.expanding_sum(((abs(tempdf['ax']).rolling(2).sum() / 2) * (1 / 200)).fillna(0)) + tempdf['ysum'] = pd.expanding_sum(((abs(tempdf['ay']).rolling(2).sum() / 2) * (1 / 200)).fillna(0)) + tempdf['zsum'] = pd.expanding_sum(((abs(tempdf['az']).rolling(2).sum() / 2) * (1 / 200)).fillna(0)) + tempdf['time'] = 1 / 200 + tempdf['time'] = pd.expanding_sum(tempdf['time']) + # C10 Signal Magnitude Area + tempdf['SigMagArea'] = (tempdf['xsum'] + tempdf['ysum'] + tempdf['zsum']) / tempdf['time'] + # C11 + tempdf['HorizSigMagArea'] = (tempdf['xsum'] + tempdf['zsum']) / tempdf['time'] + # Sum vector magnitude + tempdf['vm'] = np.sqrt(tempdf['fx'] ** 2 + tempdf['fy'] ** 2 + tempdf['fz'] ** 2) + # Maximum peak to peak acceleration amplitude + tempdf['Amax'] = (tempdf['vm'].rolling(200).max()) + tempdf['Amin'] = (tempdf['vm'].rolling(200).min()) + # C3 + tempdf['peak_diff'] = tempdf['Amax'] - tempdf['Amin'] + # Angle from horizontal to z-axis + tempdf['angle_from_horiz'] = np.arctan2(np.sqrt(tempdf['fx'] ** 2 + tempdf['fz'] ** 2), -tempdf['fy']) * 180 / np.pi + tempdf['angle_std'] = pd.rolling_std(tempdf['angle_from_horiz'], 200) + + # had to make versions of this to put into sliding window, will change once I + # confirm they're the same as the others below + tempdf['horiz_std_mag9'] = np.sqrt(tempdf['fx_std'] ** 2 + tempdf['fz_std'] ** 2) + tempdf['horiz_vector_mag9'] = np.sqrt(tempdf['fx'] ** 2 + tempdf['fz'] ** 2) + tempdf['std_mag9'] = np.sqrt(tempdf['fx_std'] ** 2 + tempdf['fy_std'] ** 2 + tempdf['fz_std'] ** 2) + tempdf['diff_std_mag9'] = np.sqrt(tempdf['bx_std'] ** 2 + tempdf['by_std'] ** 2 + tempdf['bz_std'] ** 2) + tempdf['horiz_mag2'] = np.sqrt(tempdf['bx'] ** 2 + tempdf['bz'] ** 2) + tempdf['horiz_std_mag2'] = np.sqrt(tempdf['bx_std'] ** 2 + tempdf['bz_std'] ** 2) + tempdf['vector_mag2'] = np.sqrt(tempdf['bx'] ** 2 + tempdf['by'] ** 2 + tempdf['bz'] ** 2) + + tempdf['gyro_horiz_std_mag'] = np.sqrt(tempdf['gx_std'] ** 2 + tempdf['gz_std'] ** 2) + tempdf['gyro_vector_mag'] = np.sqrt(tempdf['gx'] ** 2 + tempdf['gy'] ** 2 + tempdf['gz'] ** 2) + tempdf['gyro_horiz_mag'] = np.sqrt(tempdf['gx'] ** 2 + tempdf['gz'] ** 2) + tempdf['gyro_std_mag'] = np.sqrt(tempdf['gx_std'] ** 2 + tempdf['gy_std'] ** 2 + tempdf['gz_std'] ** 2) + + tempdf = pd.concat( + [tempdf.reset_index(drop=True), trial_df[['activity', 'subject', 'trial']].reset_index(drop=True)], + axis=1) + new_df = pd.concat([new_df.reset_index(drop=True), tempdf]) + + sliding_window(tempdf, kind) + + # differential vector mag + new_df['vector_mag'] = np.sqrt(new_df['fx'] ** 2 + new_df['fy'] ** 2 + new_df['fz'] ** 2) + # C2 + new_df['horiz_mag'] = np.sqrt(new_df['fx'] ** 2 + new_df['fz'] ** 2) + # + new_df['vert'] = new_df['by'] - new_df['y_roll'] + new_df['vert2'] = new_df['ay'] - new_df['y_roll'] + new_df['vert3'] = new_df['fy'] - new_df['fy_roll'] + # C9 + new_df['std_mag2'] = np.sqrt(new_df['bx_std'] ** 2 + new_df['by_std'] ** 2 + new_df['bz_std'] ** 2) + + putList.append(new_df.fillna(0)) + + print('Completed... It took', time.time() - start, 'seconds.') + + +prepare_data('f') # Prepare Fall Data +prepare_data('a') # Prepare ADL Data + +print('ADL dataframes:',len(adl_df_list), '\t\tFall dataframes:', len(fall_df_list)) +print('ADL windows:', len(windowList_adl), '\t\tFall windows:', len(windowList_fall)) + +wList_f = windowList_fall[:] # Copy of fall window list +wList_a = windowList_adl[:] + +# putting together falls and adls +fall_df = pd.concat(fall_df_list) +adl_df = pd.concat(adl_df_list) +all_df = pd.concat([fall_df, adl_df]).fillna(0) # Filling nulls with zeroes + +horiz_std_mag_THRESHOLD = 155 # Set threshold for Horizontal Standard Deviation Magnitude +horiz_vec_mag_THRESHOLD = 400 # Set threshold for Horizontal Sum Vector Magnitude +vector_mag_THRESHOLD = 750 # Set threshold for Sum Vector Magnitude +gyro_horiz_std_THRESHOLD = 150 +belowThresh = 0 # Keep track of windows below thresholds +aboveThresh = 0 # Keep track of windows above thresholds +i = 0 # placeholder +lastActInd = 0 # Last activity index +lastTrialNum = 0 # Last trial number +fallTrialList = [] # +listInFallTrialList = [] # +missedFalls = 0 + +for window in wList_f: # Iterate through fall windows + windNum = i # Set window index + respWindNum = i % 22 # Set respective window index (0-21) + activityIndex = int(i / (22 * 5)) # Calculate activity index (0-13/14?) + trialNum = (int(i / 22)) % 5 # Calculate trial number (0-4) + + # Custom setting for thresholds, currently need to pass 2/3 thresholds to pass + if ((window['horiz_std_mag9'].max() >= horiz_std_mag_THRESHOLD) * 1 + ( + window['horiz_vector_mag9'].max() >= horiz_vec_mag_THRESHOLD) * 1 + + (window['vm'].max() >= vector_mag_THRESHOLD) * 1 + ( + window['gyro_horiz_std_mag'].max() >= gyro_horiz_std_THRESHOLD) * 1 >= 1): + + aboveThresh += 1 + + if (activityIndex == lastActInd): + if (trialNum == lastTrialNum): + listInFallTrialList.append(respWindNum) + lastTrialNum = trialNum + lastActInd = activityIndex + else: + fallTrialList.append(listInFallTrialList) + listInFallTrialList = [] + listInFallTrialList.append(respWindNum) + lastActInd = activityIndex + diff = (trialNum - lastTrialNum) + absdiff = diff % 5 + + if absdiff > 1: + for j in range(absdiff - 1): + fallTrialList.append([]) + missedFalls += 1 + + lastTrialNum = trialNum + else: + diff = (trialNum - lastTrialNum) + absdiff = diff % 5 + activity_diff = (activityIndex - lastActInd) + + fallTrialList.append(listInFallTrialList) + if (activity_diff > 0) & (trialNum != 0): + for k in range(3 - absdiff): + fallTrialList.append([]) + missedFalls += 1 + if absdiff > 1: + for j in range(absdiff - 1): + fallTrialList.append([]) + missedFalls += 1 + listInFallTrialList = [] + listInFallTrialList.append(respWindNum) + lastTrialNum = trialNum + lastActInd = activityIndex + else: + belowThresh += 1 + i += 1 + +fallTrialList.append(listInFallTrialList) + +print('below:', belowThresh) +print('above:', aboveThresh) + + +FTL = fallTrialList[:] +print('len fallTrialList:', len(FTL)) +print('missed falls:', missedFalls) +print('false alarms:', len(falseAlarms), ':', falseAlarms) + + +fall_windows = pd.concat(wList_f) +adl_windows = pd.concat(wList_a) +all_windows = pd.concat([fall_windows, adl_windows]) + + +print('COMPLETED') + + + +# Titles for fall activities +fall_titles = ['Fall forward while walking caused by a slip', 'Fall backward while walking caused by a slip', + 'Lateral fall while walking caused by a slip', 'Fall forward while walking caused by a trip', + 'Fall forward while jogging caused by a trip', 'Vertical fall while walking caused by fainting', + 'Fall while walking, with use of hands in a table to dampen fall, caused by fainting', + 'Fall forward when trying to get up', 'Lateral fall when trying to get up', + 'Fall forward when trying to sit down', 'Fall backward when trying to sit down', 'Lateral fall when trying to sit down', + 'Fall forward while sitting, caused by fainting or falling asleep', + 'Fall backward while sitting, caused by fainting or falling asleep', + 'Lateral fall while sitting, caused by fainting or falling asleep'] +# Titles for ADLs +adl_titles = ['Walking slowly', 'Walking quickly', 'Jogging slowly', 'Jogging quickly', 'Walking upstairs and downstairs slowly', + 'Walking upstairs and downstairs quickly','Slowly sit in a half height chair, wait a moment, and up slowly', + 'Quickly sit in a half height chair, wait a moment, and up quickly', + 'Slowly sit in a low height chair, wait a moment, and up slowly','Quickly sit in a low height chair, wait a moment, and up quickly', + 'Sitting a moment, trying to get up, and collapse into a chair', + 'Sitting a moment, lying slowly, wait a moment, and sit again','Sitting a moment, lying quickly, wait a moment, and sit again', + 'Being on oneís back change to lateral position, wait a moment, and change to oneís back', + 'Standing, slowly bending at knees, and getting up', 'Standing, slowly bending without bending knees, and getting up', + 'Standing, get into a car, remain seated and get out of the car','Stumble while walking', + 'Gently jump without falling (trying to reach a high object)'] + +dailies = ['D01', 'D02', 'D03', 'D04', 'D05', 'D06', 'D07', 'D08', 'D09', 'D10', 'D11', 'D12', 'D13', 'D14', 'D15', + 'D16', 'D17', 'D18', 'D19'] +falls = ['F01', 'F02', 'F03', 'F04', 'F05', 'F06', 'F07', 'F08', 'F09', 'F10', 'F11', 'F12', 'F13', 'F14', 'F15'] + +fs = 200.0 # frequency samplet +subjectCodes = ['SA01', 'SA02', 'SA03', 'SA04'] + + +def get_trial_time(index, kind): + r = 5 + if kind == 'f': + n = 3000.0 + t = np.linspace(0, 15.0, n, endpoint=False) + else: + if index in list(range(0, 4)): + T = 100 # seconds + elif index in [4, 5, 16]: + T = 25 + else: + T = 12 + + n = int(T * fs) # total number of samples + t = np.linspace(0, T, n, endpoint=False) + + if index <= 3: + r = 1 + + return t, int(n), int(r) + + +## index w <-- activity = F[w+1], eg. index=4 gives a df that contains activity F05 +## This makes sense since data_list[0] contains activity F01 + +def plot_trials(index, subjectIndex, kind): + if kind == 'f': + correctList, correctTitles, correctCodes = fall_df_list, fall_titles, falls + else: + correctList, correctTitles, correctCodes = adl_df_list, adl_titles, dailies + + new_df = correctList[index + 15 * subjectIndex] + t, n, r = get_trial_time(index, kind) + + T = int(n / fs) + l = list(range(0, int(1000 * T), int(1000 * 0.625))) + l = np.array(l) / 1000 + xcoords = list(l) + + plt.figure(figsize=(15, 2 * r)) + + for i in range(0, r): + curr_df = new_df[i * n:i * n + n] + if len(curr_df) != 0: + if len(curr_df) != n: + curr_df = curr_df.append(curr_df.iloc[len(curr_df) - 1]) + plt.subplot(r, 1, i + 1) + plt.plot(t, curr_df['fx'], 'b-', label='x') + plt.plot(t, curr_df['fy'], 'r-', label='y') + plt.plot(t, curr_df['fz'], 'y-', label='z') + for xc in xcoords: + plt.axvline(x=xc) + plt.grid() + labs = list(range(0, len(xcoords) - 2)) + plt.xticks(xcoords, labs) + plt.legend() + plt.ylabel('trial' + str(i + 1)) + if i == 0: + plt.title(subjectCodes[subjectIndex] + ' - ' + correctCodes[index] + ':' + correctTitles[index]) + + if kind == 'f': + tempA = FTL[5 * index + i + 75 * subjectIndex] + if len(tempA) > 0: + shadeStart = tempA[0] + shadeFin = tempA[len(tempA) - 1] + 2 + plt.axvspan(shadeStart * .625, shadeFin * .625, color='red', alpha=0.5) + + plt.subplots_adjust(hspace=0.35) + plt.show() + + +def plot_one_from_each(index, kind): + if kind == 'f': + correctList, correctTitles, correctCodes = fall_df_list, fall_titles, falls + else: + correctList, correctTitles, correctCodes = adl_df_list, adl_titles, dailies + + plt.figure(figsize=(15, 10)) + + for i in range(0, 5): + if (index + i + 1) == len(correctList): return + new_df = correctList[index + i] + t, n, r = get_trial_time(index, kind) + + try: + curr_df = new_df[0:n] + if len(curr_df) != n: + curr_df = curr_df.append(curr_df.iloc[len(curr_df) - 1]) + plt.subplot(5, 1, i + 1) + plt.plot(t, curr_df['bx'], 'b-', label='x') + plt.plot(t, curr_df['by'], 'r-', label='y') + plt.plot(t, curr_df['bz'], 'y-', label='z') + plt.grid() + plt.legend() + plt.ylabel('Acc') + plt.title(correctCodes[index + i] + ' ' + correctTitles[index + i]) + except: + print('') + + plt.subplots_adjust(hspace=0.4) + plt.show() + + +def plot_feats(index, tri, kind): + if kind == 'f': + correctList, correctTitles, correctCodes = fall_df_list, fall_titles, falls + else: + correctList, correctTitles, correctCodes = adl_df_list, adl_titles, dailies + + t, n, r = get_trial_time(index, kind) + + new_df = correctList[index] + curr_df = new_df[tri * n:tri * n + n] + + feat_list = ['vector_mag', 'vector_mag2', 'horiz_mag', 'vert', 'std_mag9', 'horiz_std_mag9', + 'peak_diff', 'HorizSigMagArea', 'angle_from_horiz', 'gyro_horiz_std_mag'] + colour_list = ['b-', 'r-', 'k-', 'c-', 'C2', 'C4', 'C1', 'C5', 'C6', 'C7'] + + x = len(feat_list) + plt.figure(figsize=(15, 2 * x)) + + for i, feat, colour in zip(range(0, x), feat_list, colour_list): + plt.subplot(x, 1, i + 1) + plt.plot(t, curr_df[feat], colour, label=feat) + plt.grid() + plt.legend() + plt.ylabel(feat) + if i == 0: plt.title(correctCodes[index] + ' ' + correctTitles[index]) + + plt.subplots_adjust(hspace=0.35) + plt.show() + + +def plot_trial(index, tri, kind): + if kind == 'f': + correctList, correctTitles, correctCodes = fall_df_list, fall_titles, falls + else: + correctList, correctTitles, correctCodes = adl_df_list, adl_titles, dailies + + new_df = correctList[index] + + t, n, r = get_trial_time(index, kind) + plt.figure(figsize=(15, 24)) + + xtypes = ['ax', 'fx', 'bx', 'gx'] + ytypes = ['ay', 'fy', 'by', 'gy'] + ztypes = ['az', 'fz', 'bz', 'gz'] + ylabs = ['raw acc (m/s^2)', 'filtered', 'filt differential', 'gyro'] + for i in range(0, len(xtypes)): + curr_df = new_df[tri * n:tri * n + n] + if len(curr_df) != n: + curr_df = curr_df.append(curr_df.iloc[len(curr_df) - 1]) + plt.subplot(12, 1, i + 1) + plt.plot(t, curr_df[xtypes[i]], 'b-', label='x') + plt.plot(t, curr_df[ytypes[i]], 'r-', label='y') + plt.plot(t, curr_df[ztypes[i]], 'y-', label='z') + plt.grid() + plt.legend() + plt.ylabel(ylabs[i]) + if i == 0: plt.title(correctCodes[index] + ' ' + correctTitles[index]) + + curr_df = correctList[index][0:int(n)] + if len(curr_df) != n: + curr_df = curr_df.append(curr_df.iloc[len(curr_df) - 1]) + + feat_list = ['vector_mag', 'vector_mag2', 'horiz_mag', 'vert', 'std_mag9', 'horiz_std_mag9', + 'peak_diff', 'HorizSigMagArea', 'angle_from_horiz', 'gyro_horiz_std_mag'] + colour_list = ['b-', 'r-', 'k-', 'c-', 'C2', 'C4', 'C1', 'C5', 'C6', 'C7'] + + x = len(feat_list) + len(xtypes) + plt.figure(figsize=(15, 2 * x)) + + for i, feat, colour in zip(range(0, x), feat_list, colour_list): + plt.subplot(12, 1, i + 1) + plt.plot(t, curr_df[feat], colour, label=feat) + plt.grid() + plt.legend() + plt.ylabel(feat) + if i == 0: plt.title(correctCodes[index] + ' ' + correctTitles[index]) + + plt.subplots_adjust(hspace=0.35) + plt.show() +